This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325779 #5 May 21 2019 22:06:12 %S A325779 1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,31,33,34,35,37,38,39, %T A325779 41,42,43,46,47,51,53,55,57,58,59,61,62,65,66,67,69,71,73,74,77,78,79, %U A325779 82,83,85,86,87,89,91,93,94,95,97,101,102,103,105,106,107 %N A325779 Heinz numbers of integer partitions for which every restriction to a subinterval has a different sum. %C A325779 First differs from A301899 in having 462. %C A325779 The enumeration of these partitions by sum is given by A325768. %e A325779 Most small numbers are in the sequence. However, the sequence of non-terms together with their prime indices begins: %e A325779 4: {1,1} %e A325779 8: {1,1,1} %e A325779 9: {2,2} %e A325779 12: {1,1,2} %e A325779 16: {1,1,1,1} %e A325779 18: {1,2,2} %e A325779 20: {1,1,3} %e A325779 24: {1,1,1,2} %e A325779 25: {3,3} %e A325779 27: {2,2,2} %e A325779 28: {1,1,4} %e A325779 30: {1,2,3} %e A325779 32: {1,1,1,1,1} %e A325779 36: {1,1,2,2} %e A325779 40: {1,1,1,3} %e A325779 44: {1,1,5} %e A325779 45: {2,2,3} %e A325779 48: {1,1,1,1,2} %e A325779 49: {4,4} %e A325779 50: {1,3,3} %t A325779 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A325779 Select[Range[100],UnsameQ@@ReplaceList[primeMS[#],{___,s__,___}:>Plus[s]]&] %Y A325779 A subsequence of A005117. %Y A325779 Cf. A000041, A002033, A056239, A103300, A112798, A143823, A169942, A299702, A301899, A325676, A325768, A325769, A325770, A325778. %K A325779 nonn %O A325779 1,2 %A A325779 _Gus Wiseman_, May 20 2019