cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325783 Reading the first row of this array, or the first column, or the successive antidiagonals is the same as reading this sequence.

This page as a plain text file.
%I A325783 #25 Jun 07 2019 11:08:40
%S A325783 1,2,2,2,3,2,2,4,5,2,3,6,7,8,3,2,9,10,11,12,2,2,13,14,15,16,17,2,4,18,
%T A325783 19,20,21,22,23,4,5,24,25,26,27,28,29,30,5,2,31,32,33,34,35,36,37,38,
%U A325783 2,3,39,40,41,42,43,44,45,46,47,3,6,48,49,50,51,52,53,54,55,56,57,6,7,58,59,60,61,62,63,64,65,66,67,68,7,8,69
%N A325783 Reading the first row of this array, or the first column, or the successive antidiagonals is the same as reading this sequence.
%C A325783 The array is always extended by its antidiagonals with the smallest term not yet present that doesn't lead to a contradiction. The sequence is thus the lexicographically earliest of its kind.
%C A325783 This regular pattern appears: . . . . 3 . . 4 5 . . 6 7 8 . . 9 10 11 12 . . 13 14 15 16 17 . . 18 19 20 21 22 23 . . This is the first time that these terms appear in the sequence. So it is possible to calculate the terms of this pattern. - _Bernard Schott_, Jun 03 2019
%F A325783 a(n*(n+1)/2) = a(n*(n-1)/2+1) = a(n). - _Rémy Sigrist_, May 21 2019
%F A325783 T(n+1,k+1) = A000027(n,k) + 2 if both sequences are read as square arrays. - _Charlie Neder_, Jun 03 2019
%F A325783 From _Bernard Schott_, Jun 03 2019: (Start)
%F A325783 For 2 <= q <= k:
%F A325783 a(k*(k+1)/2 + 2) = (k-2)*(k-1)/2 + 3.
%F A325783 a(k*(k+1)/2 + q) = (k-2)*(k-1)/2 + q + 1.
%F A325783 a(k*(k+1)/2 + k) = a(k*(k+3)/2) = (k-2)*(k-1)/2 + k + 1 = (k^2-k+4)/2. (End)
%e A325783 Array:
%e A325783   1  2  2  2  3   2   2   4   5   2   3 ...
%e A325783   2  3  4  6  9  13  18  24  31  39  48 ...
%e A325783   2  5  7 10 14  19  25  32  40  49  59 ...
%e A325783   2  8 11 15 20  26  33  41  50  60  71 ...
%e A325783   3 12 16 21 27  34  42  51  61  72  84 ...
%e A325783   2 17 22 28 35  43  52  62  73  85  98 ...
%e A325783   2 23 29 36 44  53  63  74  86  99 113 ...
%e A325783   4 30 37 45 54  61  75  87 100 112 129 ...
%e A325783   5 38 46 55 62  76  88 101 113 130 146 ...
%e A325783   2 47 56 63 77  89 102 114 131 147 164 ...
%e A325783   3 57 64 78 90 101 115 132 148 165 183 ...
%e A325783   ...
%Y A325783 Cf. A325784 and A325785 where the same idea is developped, but restricted to, respectively, the first row and the first column of the arrays presented.
%Y A325783 Cf. A000124, A000217, A000027.
%K A325783 nonn,tabl
%O A325783 1,2
%A A325783 _Eric Angelini_, May 21 2019