A325787 Number of perfect strict necklace compositions of n.
1, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 4, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Keywords
Examples
The a(1) = 1 through a(31) = 10 perfect strict necklace compositions (empty columns not shown): (1) (1,2) (1,2,4) (1,2,6,4) (1,3,10,2,5) (1,10,8,7,2,3) (1,4,2) (1,3,2,7) (1,5,2,10,3) (1,13,6,4,5,2) (1,4,6,2) (1,14,4,2,3,7) (1,7,2,3) (1,14,5,2,6,3) (1,2,5,4,6,13) (1,2,7,4,12,5) (1,3,2,7,8,10) (1,3,6,2,5,14) (1,5,12,4,7,2) (1,7,3,2,4,14) From _Bert Dobbelaere_, Nov 11 2020: (Start) Compositions matching nonzero terms from a(57) to a(273), up to symmetry. a(57) = 12: (1,2,10,19,4,7,9,5) (1,3,5,11,2,12,17,6) (1,3,8,2,16,7,15,5) (1,4,2,10,18,3,11,8) (1,4,22,7,3,6,2,12) (1,6,12,4,21,3,2,8) a(73) = 8: (1,2,4,8,16,5,18,9,10) (1,4,7,6,3,28,2,8,14) (1,6,4,24,13,3,2,12,8) (1,11,8,6,4,3,2,22,16) a(91) = 12: (1,2,6,18,22,7,5,16,4,10) (1,3,9,11,6,8,2,5,28,18) (1,4,2,20,8,9,23,10,3,11) (1,4,3,10,2,9,14,16,6,26) (1,5,4,13,3,8,7,12,2,36) (1,6,9,11,29,4,8,2,3,18) a(133) = 36: (1,2,9,8,14,4,43,7,6,10,5,24) (1,2,12,31,25,4,9,10,7,11,16,5) (1,2,14,4,37,7,8,27,5,6,13,9) (1,2,14,12,32,19,6,5,4,18,13,7) (1,3,8,9,5,19,23,16,13,2,28,6) (1,3,12,34,21,2,8,9,5,6,7,25) (1,3,23,24,6,22,10,11,18,2,5,8) (1,4,7,3,16,2,6,17,20,9,13,35) (1,4,16,3,15,10,12,14,17,33,2,6) (1,4,19,20,27,3,6,25,7,8,2,11) (1,4,20,3,40,10,9,2,15,16,6,7) (1,5,12,21,29,11,3,16,4,22,2,7) (1,7,13,12,3,11,5,18,4,2,48,9) (1,8,10,5,7,21,4,2,11,3,26,35) (1,14,3,2,4,7,21,8,25,10,12,26) (1,14,10,20,7,6,3,2,17,4,8,41) (1,15,5,3,25,2,7,4,6,12,14,39) (1,22,14,20,5,13,8,3,4,2,10,31) a(183) = 40: (1,2,13,7,5,14,34,6,4,33,18,17,21,8) (1,2,21,17,11,5,9,4,26,6,47,15,12,7) (1,2,28,14,5,6,9,12,48,18,4,13,16,7) (1,3,5,6,25,32,23,10,18,2,17,7,22,12) (1,3,12,7,20,14,44,6,5,24,2,28,8,9) (1,3,24,6,12,14,11,55,7,2,8,5,16,19) (1,4,6,31,3,13,2,7,14,12,17,46,8,19) (1,4,8,52,3,25,18,2,9,24,6,10,7,14) (1,4,20,2,12,3,6,7,33,11,8,10,35,31) (1,5,2,24,15,29,14,21,13,4,33,3,9,10) (1,5,23,27,42,3,4,11,2,19,12,10,16,8) (1,6,8,22,4,5,33,21,3,20,32,16,2,10) (1,8,3,10,23,5,56,4,2,14,15,17,7,18) (1,8,21,45,6,7,11,17,3,2,10,4,23,25) (1,9,5,40,3,4,21,35,16,18,2,6,11,12) (1,9,14,26,4,2,11,5,3,12,27,34,7,28) (1,9,21,25,3,4,8,5,6,16,2,36,14,33) (1,10,22,34,27,12,3,4,2,14,24,5,8,17) (1,10,48,9,19,4,8,6,7,17,3,2,34,15) (1,12,48,6,2,38,3,22,7,10,11,5,4,14) a(273) = 12: (1,2,4,8,16,32,27,26,11,9,45,13,10,29,5,17,18) (1,3,12,10,31,7,27,2,6,5,19,20,62,14,9,28,17) (1,7,3,15,33,5,24,68,2,14,6,17,4,9,19,12,34) (1,7,12,44,25,41,9,17,4,6,22,33,13,2,3,11,23) (1,7,31,2,11,3,9,36,17,4,22,6,18,72,5,10,19) (1,21,11,50,39,13,6,4,14,16,25,26,3,2,7,8,27) (End)
Links
- Bert Dobbelaere, Table of n, a(n) for n = 1..306
Crossrefs
Programs
-
Mathematica
neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; subalt[q_]:=Union[ReplaceList[q,{_,s__,_}:>{s}],DeleteCases[ReplaceList[q,{t___,,u___}:>{u,t}],{}]]; Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],neckQ[#]&&Sort[Total/@subalt[#]]==Range[n]&]],{n,30}]
Extensions
More terms from Bert Dobbelaere, Nov 11 2020
Comments