This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325788 #12 Aug 24 2020 23:06:30 %S A325788 1,0,1,0,0,2,2,0,0,4,4,4,4,0,20,6,16,12,10,0,84,40,74,42,66,38,22,254, %T A325788 238,188,356,242,272,150,148,1140,1058,1208,1546,1288 %N A325788 Number of complete strict necklace compositions of n. %C A325788 A strict necklace composition of n is a finite sequence of distinct positive integers summing to n that is lexicographically minimal among all of its cyclic rotations. In other words, it is a strict composition of n starting with its least part (counted by A032153). A circular subsequence is a sequence of consecutive terms where the last and first parts are also considered consecutive. A necklace composition of n is complete if every positive integer from 1 to n is the sum of some circular subsequence. %e A325788 The a(1) = 1 through a(16) = 6 complete strict necklace compositions (empty columns not shown): %e A325788 (1) (12) (123) (124) (1234) (1253) (1245) (1264) (12345) (12634) %e A325788 (132) (142) (1324) (1325) (1326) (1327) (12354) (13624) %e A325788 (1423) (1352) (1542) (1462) (12435) (14263) %e A325788 (1432) (1523) (1623) (1723) (12453) (14326) %e A325788 (12543) (14362) %e A325788 (13254) (16234) %e A325788 (13425) %e A325788 (13452) %e A325788 (13524) %e A325788 (13542) %e A325788 (14235) %e A325788 (14253) %e A325788 (14325) %e A325788 (14523) %e A325788 (14532) %e A325788 (15234) %e A325788 (15243) %e A325788 (15324) %e A325788 (15342) %e A325788 (15432) %t A325788 neckQ[q_]:=Array[OrderedQ[{q,RotateRight[q,#]}]&,Length[q]-1,1,And]; %t A325788 subalt[q_]:=Union[ReplaceList[q,{___,s__,___}:>{s}],DeleteCases[ReplaceList[q,{t___,__,u___}:>{u,t}],{}]]; %t A325788 Table[Length[Select[Join@@Permutations/@Select[IntegerPartitions[n],UnsameQ@@#&],neckQ[#]&&Union[Total/@subalt[#]]==Range[n]&]],{n,30}] %Y A325788 Cf. A000740, A002033, A008965, A032153, A103295, A126796, A188431, A325684, A325785, A325786, A325787, A325790, A325791. %K A325788 nonn,more %O A325788 1,6 %A A325788 _Gus Wiseman_, May 22 2019