cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325792 Positive integers with as many proper divisors as the sum of their prime indices.

This page as a plain text file.
%I A325792 #7 May 23 2019 14:52:44
%S A325792 1,2,4,6,8,16,18,20,32,42,54,56,64,100,128,162,176,204,234,256,260,
%T A325792 294,308,315,350,392,416,486,500,512,690,696,798,920,1024,1026,1064,
%U A325792 1088,1116,1122,1190,1365,1430,1458,1496,1755,1936,1968,2025,2048,2058,2079
%N A325792 Positive integers with as many proper divisors as the sum of their prime indices.
%C A325792 First differs from A325780 in having 204.
%C A325792 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).
%e A325792 The term 42 is in the sequence because it has 7 proper divisors (1, 2, 3, 6, 7, 14, 21) and its sum of prime indices is also 1 + 2 + 4 = 7.
%e A325792 The sequence of terms together with their prime indices begins:
%e A325792      1: {}
%e A325792      2: {1}
%e A325792      4: {1,1}
%e A325792      6: {1,2}
%e A325792      8: {1,1,1}
%e A325792     16: {1,1,1,1}
%e A325792     18: {1,2,2}
%e A325792     20: {1,1,3}
%e A325792     32: {1,1,1,1,1}
%e A325792     42: {1,2,4}
%e A325792     54: {1,2,2,2}
%e A325792     56: {1,1,1,4}
%e A325792     64: {1,1,1,1,1,1}
%e A325792    100: {1,1,3,3}
%e A325792    128: {1,1,1,1,1,1,1}
%e A325792    162: {1,2,2,2,2}
%e A325792    176: {1,1,1,1,5}
%e A325792    204: {1,1,2,7}
%e A325792    234: {1,2,2,6}
%e A325792    256: {1,1,1,1,1,1,1,1}
%t A325792 Select[Range[100],DivisorSigma[0,#]-1==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]
%Y A325792 Positions of 1's in A325794.
%Y A325792 Heinz numbers of the partitions counted by A325828.
%Y A325792 Cf. A000005, A002033, A056239, A112798, A299702, A304793.
%Y A325792 Cf. A325694, A325780, A325781, A325793, A325795, A325796, A325797, A325798.
%K A325792 nonn
%O A325792 1,2
%A A325792 _Gus Wiseman_, May 23 2019