This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325792 #7 May 23 2019 14:52:44 %S A325792 1,2,4,6,8,16,18,20,32,42,54,56,64,100,128,162,176,204,234,256,260, %T A325792 294,308,315,350,392,416,486,500,512,690,696,798,920,1024,1026,1064, %U A325792 1088,1116,1122,1190,1365,1430,1458,1496,1755,1936,1968,2025,2048,2058,2079 %N A325792 Positive integers with as many proper divisors as the sum of their prime indices. %C A325792 First differs from A325780 in having 204. %C A325792 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n). %e A325792 The term 42 is in the sequence because it has 7 proper divisors (1, 2, 3, 6, 7, 14, 21) and its sum of prime indices is also 1 + 2 + 4 = 7. %e A325792 The sequence of terms together with their prime indices begins: %e A325792 1: {} %e A325792 2: {1} %e A325792 4: {1,1} %e A325792 6: {1,2} %e A325792 8: {1,1,1} %e A325792 16: {1,1,1,1} %e A325792 18: {1,2,2} %e A325792 20: {1,1,3} %e A325792 32: {1,1,1,1,1} %e A325792 42: {1,2,4} %e A325792 54: {1,2,2,2} %e A325792 56: {1,1,1,4} %e A325792 64: {1,1,1,1,1,1} %e A325792 100: {1,1,3,3} %e A325792 128: {1,1,1,1,1,1,1} %e A325792 162: {1,2,2,2,2} %e A325792 176: {1,1,1,1,5} %e A325792 204: {1,1,2,7} %e A325792 234: {1,2,2,6} %e A325792 256: {1,1,1,1,1,1,1,1} %t A325792 Select[Range[100],DivisorSigma[0,#]-1==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&] %Y A325792 Positions of 1's in A325794. %Y A325792 Heinz numbers of the partitions counted by A325828. %Y A325792 Cf. A000005, A002033, A056239, A112798, A299702, A304793. %Y A325792 Cf. A325694, A325780, A325781, A325793, A325795, A325796, A325797, A325798. %K A325792 nonn %O A325792 1,2 %A A325792 _Gus Wiseman_, May 23 2019