This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325793 #13 Oct 16 2023 23:26:10 %S A325793 3,10,28,66,70,88,208,228,306,340,364,490,495,525,544,550,675,744,870, %T A325793 966,1160,1216,1242,1254,1288,1326,1330,1332,1672,1768,1785,1870,2002, %U A325793 2064,2145,2295,2457,2900,2944,3250,3280,3430,3468,3540,3724,4125,4144,4248 %N A325793 Positive integers whose number of divisors is equal to their sum of prime indices. %C A325793 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n). %H A325793 Robert Israel, <a href="/A325793/b325793.txt">Table of n, a(n) for n = 1..10000</a> %e A325793 The term 70 is in the sequence because it has 8 divisors {1, 2, 5, 7, 10, 14, 35, 70} and its sum of prime indices is also 1 + 3 + 4 = 8. %e A325793 The sequence of terms together with their prime indices begins: %e A325793 3: {2} %e A325793 10: {1,3} %e A325793 28: {1,1,4} %e A325793 66: {1,2,5} %e A325793 70: {1,3,4} %e A325793 88: {1,1,1,5} %e A325793 208: {1,1,1,1,6} %e A325793 228: {1,1,2,8} %e A325793 306: {1,2,2,7} %e A325793 340: {1,1,3,7} %e A325793 364: {1,1,4,6} %e A325793 490: {1,3,4,4} %e A325793 495: {2,2,3,5} %e A325793 525: {2,3,3,4} %e A325793 544: {1,1,1,1,1,7} %e A325793 550: {1,3,3,5} %e A325793 675: {2,2,2,3,3} %e A325793 744: {1,1,1,2,11} %e A325793 870: {1,2,3,10} %e A325793 966: {1,2,4,9} %p A325793 filter:= proc(n) local F,t; %p A325793 F:= ifactors(n)[2]; %p A325793 add(numtheory:-pi(t[1])*t[2],t=F) = mul(t[2]+1,t=F) %p A325793 end proc: %p A325793 select(filter, [$1..10000]); # _Robert Israel_, Oct 16 2023 %t A325793 Select[Range[100],DivisorSigma[0,#]==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&] %Y A325793 Positions of 0's in A325794. %Y A325793 Contains A239885 except for 1. %Y A325793 Cf. A000005, A056239, A112798, A299702, A304793. %Y A325793 Cf. A325694, A325780, A325781, A325792, A325795, A325796, A325797, A325798. %K A325793 nonn %O A325793 1,1 %A A325793 _Gus Wiseman_, May 23 2019