cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325793 Positive integers whose number of divisors is equal to their sum of prime indices.

This page as a plain text file.
%I A325793 #13 Oct 16 2023 23:26:10
%S A325793 3,10,28,66,70,88,208,228,306,340,364,490,495,525,544,550,675,744,870,
%T A325793 966,1160,1216,1242,1254,1288,1326,1330,1332,1672,1768,1785,1870,2002,
%U A325793 2064,2145,2295,2457,2900,2944,3250,3280,3430,3468,3540,3724,4125,4144,4248
%N A325793 Positive integers whose number of divisors is equal to their sum of prime indices.
%C A325793 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).
%H A325793 Robert Israel, <a href="/A325793/b325793.txt">Table of n, a(n) for n = 1..10000</a>
%e A325793 The term 70 is in the sequence because it has 8 divisors {1, 2, 5, 7, 10, 14, 35, 70} and its sum of prime indices is also 1 + 3 + 4 = 8.
%e A325793 The sequence of terms together with their prime indices begins:
%e A325793      3: {2}
%e A325793     10: {1,3}
%e A325793     28: {1,1,4}
%e A325793     66: {1,2,5}
%e A325793     70: {1,3,4}
%e A325793     88: {1,1,1,5}
%e A325793    208: {1,1,1,1,6}
%e A325793    228: {1,1,2,8}
%e A325793    306: {1,2,2,7}
%e A325793    340: {1,1,3,7}
%e A325793    364: {1,1,4,6}
%e A325793    490: {1,3,4,4}
%e A325793    495: {2,2,3,5}
%e A325793    525: {2,3,3,4}
%e A325793    544: {1,1,1,1,1,7}
%e A325793    550: {1,3,3,5}
%e A325793    675: {2,2,2,3,3}
%e A325793    744: {1,1,1,2,11}
%e A325793    870: {1,2,3,10}
%e A325793    966: {1,2,4,9}
%p A325793 filter:= proc(n) local F,t;
%p A325793   F:= ifactors(n)[2];
%p A325793   add(numtheory:-pi(t[1])*t[2],t=F) = mul(t[2]+1,t=F)
%p A325793 end proc:
%p A325793 select(filter, [$1..10000]); # _Robert Israel_, Oct 16 2023
%t A325793 Select[Range[100],DivisorSigma[0,#]==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]
%Y A325793 Positions of 0's in A325794.
%Y A325793 Contains A239885 except for 1.
%Y A325793 Cf. A000005, A056239, A112798, A299702, A304793.
%Y A325793 Cf. A325694, A325780, A325781, A325792, A325795, A325796, A325797, A325798.
%K A325793 nonn
%O A325793 1,1
%A A325793 _Gus Wiseman_, May 23 2019