cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325800 Numbers whose sum of prime indices is equal to the number of distinct subset-sums of their prime indices.

This page as a plain text file.
%I A325800 #11 Oct 30 2024 12:12:55
%S A325800 3,10,28,66,88,156,208,306,340,408,544,570,684,760,912,966,1216,1242,
%T A325800 1288,1380,1656,1840,2208,2436,2610,2900,2944,3132,3248,3480,3906,
%U A325800 4092,4176,4340,4640,4650,5022,5208,5456,5568,5580,6200,6696,6944,7326,7424,7440
%N A325800 Numbers whose sum of prime indices is equal to the number of distinct subset-sums of their prime indices.
%C A325800 First differs from A325793 in lacking 70.
%C A325800 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n). A subset-sum of an integer partition is any sum of a submultiset of it.
%C A325800 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose sum is equal to their number of distinct subset-sums. The enumeration of these partitions by sum is given by A126796 interlaced with zeros.
%H A325800 Robert Israel, <a href="/A325800/b325800.txt">Table of n, a(n) for n = 1..10000</a>
%F A325800 A056239(a(n)) = A299701(a(n)) = A304793(a(n)) + 1.
%e A325800 340 has prime indices {1,1,3,7} which sum to 12 and have 12 distinct subset-sums: {0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12}, so 340 is in the sequence.
%e A325800 The sequence of terms together with their prime indices begins:
%e A325800      3: {2}
%e A325800     10: {1,3}
%e A325800     28: {1,1,4}
%e A325800     66: {1,2,5}
%e A325800     88: {1,1,1,5}
%e A325800    156: {1,1,2,6}
%e A325800    208: {1,1,1,1,6}
%e A325800    306: {1,2,2,7}
%e A325800    340: {1,1,3,7}
%e A325800    408: {1,1,1,2,7}
%e A325800    544: {1,1,1,1,1,7}
%e A325800    570: {1,2,3,8}
%e A325800    684: {1,1,2,2,8}
%e A325800    760: {1,1,1,3,8}
%e A325800    912: {1,1,1,1,2,8}
%e A325800    966: {1,2,4,9}
%e A325800   1216: {1,1,1,1,1,1,8}
%e A325800   1242: {1,2,2,2,9}
%e A325800   1288: {1,1,1,4,9}
%e A325800   1380: {1,1,2,3,9}
%p A325800 filter:= proc(n) local F,t,S,i,r;
%p A325800   F:= map(t -> [numtheory:-pi(t[1]),t[2]], ifactors(n)[2]);
%p A325800   S:= {0}:
%p A325800   for t in F do
%p A325800    S:= map(s -> seq(s + i*t[1],i=0..t[2]),S);
%p A325800   od;
%p A325800   nops(S) = add(t[1]*t[2],t=F)
%p A325800 end proc:
%p A325800 select(filter, [$1..10000]); # _Robert Israel_, Oct 30 2024
%t A325800 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
%t A325800 Select[Range[1000],hwt[#]==Length[Union[hwt/@Divisors[#]]]&]
%Y A325800 Positions of 1's in A325799.
%Y A325800 Includes A239885 except for 1.
%Y A325800 Cf. A002033, A056239, A108917, A112798, A126796, A299701, A299702.
%Y A325800 Cf. A325694, A325780, A325781, A325792, A325793, A325801, A325802.
%K A325800 nonn
%O A325800 1,1
%A A325800 _Gus Wiseman_, May 23 2019