This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325800 #11 Oct 30 2024 12:12:55 %S A325800 3,10,28,66,88,156,208,306,340,408,544,570,684,760,912,966,1216,1242, %T A325800 1288,1380,1656,1840,2208,2436,2610,2900,2944,3132,3248,3480,3906, %U A325800 4092,4176,4340,4640,4650,5022,5208,5456,5568,5580,6200,6696,6944,7326,7424,7440 %N A325800 Numbers whose sum of prime indices is equal to the number of distinct subset-sums of their prime indices. %C A325800 First differs from A325793 in lacking 70. %C A325800 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n). A subset-sum of an integer partition is any sum of a submultiset of it. %C A325800 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose sum is equal to their number of distinct subset-sums. The enumeration of these partitions by sum is given by A126796 interlaced with zeros. %H A325800 Robert Israel, <a href="/A325800/b325800.txt">Table of n, a(n) for n = 1..10000</a> %F A325800 A056239(a(n)) = A299701(a(n)) = A304793(a(n)) + 1. %e A325800 340 has prime indices {1,1,3,7} which sum to 12 and have 12 distinct subset-sums: {0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12}, so 340 is in the sequence. %e A325800 The sequence of terms together with their prime indices begins: %e A325800 3: {2} %e A325800 10: {1,3} %e A325800 28: {1,1,4} %e A325800 66: {1,2,5} %e A325800 88: {1,1,1,5} %e A325800 156: {1,1,2,6} %e A325800 208: {1,1,1,1,6} %e A325800 306: {1,2,2,7} %e A325800 340: {1,1,3,7} %e A325800 408: {1,1,1,2,7} %e A325800 544: {1,1,1,1,1,7} %e A325800 570: {1,2,3,8} %e A325800 684: {1,1,2,2,8} %e A325800 760: {1,1,1,3,8} %e A325800 912: {1,1,1,1,2,8} %e A325800 966: {1,2,4,9} %e A325800 1216: {1,1,1,1,1,1,8} %e A325800 1242: {1,2,2,2,9} %e A325800 1288: {1,1,1,4,9} %e A325800 1380: {1,1,2,3,9} %p A325800 filter:= proc(n) local F,t,S,i,r; %p A325800 F:= map(t -> [numtheory:-pi(t[1]),t[2]], ifactors(n)[2]); %p A325800 S:= {0}: %p A325800 for t in F do %p A325800 S:= map(s -> seq(s + i*t[1],i=0..t[2]),S); %p A325800 od; %p A325800 nops(S) = add(t[1]*t[2],t=F) %p A325800 end proc: %p A325800 select(filter, [$1..10000]); # _Robert Israel_, Oct 30 2024 %t A325800 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; %t A325800 Select[Range[1000],hwt[#]==Length[Union[hwt/@Divisors[#]]]&] %Y A325800 Positions of 1's in A325799. %Y A325800 Includes A239885 except for 1. %Y A325800 Cf. A002033, A056239, A108917, A112798, A126796, A299701, A299702. %Y A325800 Cf. A325694, A325780, A325781, A325792, A325793, A325801, A325802. %K A325800 nonn %O A325800 1,1 %A A325800 _Gus Wiseman_, May 23 2019