This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325802 #10 Oct 30 2024 08:05:33 %S A325802 12,30,40,63,70,112,154,165,198,220,273,286,325,351,352,364,442,525, %T A325802 550,561,595,646,675,714,741,748,765,832,850,874,918,931,952,988,1045, %U A325802 1173,1254,1334,1425,1495,1539,1564,1653,1666,1672,1771,1794,1798,1870,1900 %N A325802 Numbers with one more divisor than distinct subset-sums of their prime indices. %C A325802 A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. A subset-sum of an integer partition is any sum of a submultiset of it. %C A325802 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of the partitions counted by A325835. %H A325802 Robert Israel, <a href="/A325802/b325802.txt">Table of n, a(n) for n = 1..10000</a> %F A325802 A000005(a(n)) = 1 + A299701(a(n)). %e A325802 The sequence of terms together with their prime indices begins: %e A325802 12: {1,1,2} %e A325802 30: {1,2,3} %e A325802 40: {1,1,1,3} %e A325802 63: {2,2,4} %e A325802 70: {1,3,4} %e A325802 112: {1,1,1,1,4} %e A325802 154: {1,4,5} %e A325802 165: {2,3,5} %e A325802 198: {1,2,2,5} %e A325802 220: {1,1,3,5} %e A325802 273: {2,4,6} %e A325802 286: {1,5,6} %e A325802 325: {3,3,6} %e A325802 351: {2,2,2,6} %e A325802 352: {1,1,1,1,1,5} %e A325802 364: {1,1,4,6} %e A325802 442: {1,6,7} %e A325802 525: {2,3,3,4} %e A325802 550: {1,3,3,5} %e A325802 561: {2,5,7} %p A325802 filter:= proc(n) local F,t,S,i; %p A325802 F:= map(t -> [numtheory:-pi(t[1]),t[2]], ifactors(n)[2]); %p A325802 S:= {0}: %p A325802 for t in F do %p A325802 S:= map(s -> seq(s + i*t[1],i=0..t[2]),S); %p A325802 od; %p A325802 nops(S) = mul(t[2]+1,t=F)-1 %p A325802 end proc: %p A325802 select(filter, [$1..2000]); # _Robert Israel_, Oct 30 2024 %t A325802 Select[Range[100],DivisorSigma[0,#]==1+Length[Union[hwt/@Divisors[#]]]&] %Y A325802 Positions of 1's in A325801. %Y A325802 Cf. A000005, A056239, A108917, A112798, A276024, A299701, A299702. %Y A325802 Cf. A325694, A325780, A325781, A325799, A325800, A325835. %K A325802 nonn %O A325802 1,1 %A A325802 _Gus Wiseman_, May 23 2019