This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325828 #16 May 11 2021 06:14:25 %S A325828 1,1,1,2,1,3,1,4,2,3,1,12,1,3,4,21,1,14,1,18,4,3,1,116,3,3,12,25,1,40, %T A325828 1,271,4,3,4,325,1,3,4,295,1,56,1,36,47,3,1,3128,4,32,4,44,1,407,4, %U A325828 566,4,3,1,1598,1,3,65,10656,5,90,1,54,4,84,1 %N A325828 Number of integer partitions of n having exactly n + 1 submultisets. %C A325828 The Heinz numbers of these partitions are given by A325792. %C A325828 The number of submultisets of an integer partition is the product of its multiplicities, each plus one. %H A325828 Alois P. Heinz, <a href="/A325828/b325828.txt">Table of n, a(n) for n = 0..1000</a> %e A325828 The 12 = 11 + 1 submultisets of the partition (4331) are: (), (1), (3), (4), (31), (33), (41), (43), (331), (431), (433), (4331), so (4331) is counted under a(11). %e A325828 The a(5) = 3 through a(11) = 12 partitions: %e A325828 221 111111 421 3311 22221 1111111111 4322 %e A325828 311 2221 11111111 51111 4331 %e A325828 11111 4111 111111111 4421 %e A325828 1111111 5411 %e A325828 6221 %e A325828 6311 %e A325828 7211 %e A325828 33311 %e A325828 44111 %e A325828 222221 %e A325828 611111 %e A325828 11111111111 %p A325828 b:= proc(n, i, p) option remember; `if`(n=0 or i=1, %p A325828 `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0, %p A325828 (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i)) %p A325828 end: %p A325828 a:= n-> b(n$2,n+1): %p A325828 seq(a(n), n=0..80); # _Alois P. Heinz_, Aug 17 2019 %t A325828 Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])-1==n&]],{n,0,30}] %t A325828 (* Second program: *) %t A325828 b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = Quotient[p, j + 1]; Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]]; %t A325828 a[n_] := b[n, n, n+1]; %t A325828 a /@ Range[0, 80] (* _Jean-François Alcover_, May 11 2021, after _Alois P. Heinz_ *) %Y A325828 Cf. A002033, A098859, A126796, A188431, A325694, A325792, A325793, A325830, A325831, A325832, A325833, A325834, A325836. %K A325828 nonn %O A325828 0,4 %A A325828 _Gus Wiseman_, May 25 2019