This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325831 #18 May 14 2021 08:20:05 %S A325831 1,1,1,2,2,4,5,8,10,16,21,35,40,58,84,120,141,199,255,347,447,592,772, %T A325831 1006,1172,1504,1928,2455,3061,3859,4778,5953,7054,8737,10742,13193, %U A325831 15783,19241,23412,28344,33951,40911,49150,58917,70482,84055,100069,118914 %N A325831 Number of integer partitions of n whose number of submultisets is greater than n. %C A325831 The number of submultisets of a partition is the product of its multiplicities, each plus one. %C A325831 The Heinz numbers of these partitions are given by A325795. %H A325831 Alois P. Heinz, <a href="/A325831/b325831.txt">Table of n, a(n) for n = 0..500</a> %F A325831 a(n) = A000041(n) - A325834(n). %F A325831 For n even, a(n) = A325832(n) - A325830(n/2); for n odd, a(n) = A325832(n). %e A325831 The a(1) = 1 through a(8) = 10 partitions: %e A325831 (1) (11) (21) (211) (221) (321) (421) (3221) %e A325831 (111) (1111) (311) (2211) (2221) (3311) %e A325831 (2111) (3111) (3211) (4211) %e A325831 (11111) (21111) (4111) (22211) %e A325831 (111111) (22111) (32111) %e A325831 (31111) (41111) %e A325831 (211111) (221111) %e A325831 (1111111) (311111) %e A325831 (2111111) %e A325831 (11111111) %p A325831 b:= proc(n, i, p) option remember; `if`(n=0 or i=1, %p A325831 `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0, %p A325831 (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i)) %p A325831 end: %p A325831 a:= n-> combinat[numbpart](n)-add(b(n$2, k), k=0..n): %p A325831 seq(a(n), n=0..55); # _Alois P. Heinz_, Aug 17 2019 %t A325831 Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])>n&]],{n,0,30}] %t A325831 (* Second program: *) %t A325831 b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, %t A325831 If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, %t A325831 Function[w, b[w, Min[w, i-1], p/(j+1)]][n-i*j], 0], {j, 0, n/i}]]; %t A325831 a[n_] := PartitionsP[n] - Sum[b[n, n, k], {k, 0, n}]; %t A325831 a /@ Range[0, 55] (* _Jean-François Alcover_, May 13 2021, after _Alois P. Heinz_ *) %Y A325831 Cf. A002033, A098859, A126796, A325694, A325792, A325795, A325828, A325830, A325832, A325833, A325834, A325836. %K A325831 nonn %O A325831 0,4 %A A325831 _Gus Wiseman_, May 25 2019