This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325832 #11 May 16 2021 12:24:44 %S A325832 1,1,2,2,3,4,6,8,13,16,22,35,50,58,85,120,162,199,267,347,462,592,773, %T A325832 1006,1293,1504,1929,2455,3081,3859,4815,5953,7363,8737,10743,13193, %U A325832 16102,19241,23413,28344,34260,40911,49197,58917,70515,84055,100070,118914 %N A325832 Number of integer partitions of n whose number of submultisets is greater than or equal to n. %C A325832 The number of submultisets of a partition is the product of its multiplicities, each plus one. %C A325832 The Heinz numbers of these partitions are given by A325796. %H A325832 Alois P. Heinz, <a href="/A325832/b325832.txt">Table of n, a(n) for n = 0..500</a> %F A325832 a(n) = A000041(n) - A325833(n). %F A325832 For n even, a(n) = A325831(n) + A325830(n/2); for n odd, a(n) = A325831(n). %e A325832 The a(1) = 1 through a(8) = 13 partitions: %e A325832 (1) (2) (21) (31) (221) (321) (421) (431) %e A325832 (11) (111) (211) (311) (411) (2221) (521) %e A325832 (1111) (2111) (2211) (3211) (3221) %e A325832 (11111) (3111) (4111) (3311) %e A325832 (21111) (22111) (4211) %e A325832 (111111) (31111) (5111) %e A325832 (211111) (22211) %e A325832 (1111111) (32111) %e A325832 (41111) %e A325832 (221111) %e A325832 (311111) %e A325832 (2111111) %e A325832 (11111111) %p A325832 b:= proc(n, i, p) option remember; `if`(n=0 or i=1, %p A325832 `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0, %p A325832 (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i)) %p A325832 end: %p A325832 a:= n-> combinat[numbpart](n)-add(b(n$2, k), k=0..n-1): %p A325832 seq(a(n), n=0..55); # _Alois P. Heinz_, Aug 17 2019 %t A325832 Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])>=n&]],{n,0,30}] %t A325832 (* Second program: *) %t A325832 b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, Function [w, b[w, Min[w, i - 1], p/(j + 1)]][n - i*j], 0], {j, 0, n/i}]]; %t A325832 a[n_] := PartitionsP[n] - Sum[b[n, n, k], {k, 0, n - 1}]; %t A325832 Table[a[n], {n, 0, 55}] (* _Jean-François Alcover_, May 16 2021, after _Alois P. Heinz_ *) %Y A325832 Cf. A002033, A098859, A108917, A126796, A325694, A325792, A325796, A325828, A325830, A325831, A325833, A325834, A325836. %K A325832 nonn %O A325832 0,3 %A A325832 _Gus Wiseman_, May 25 2019