This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325833 #12 May 12 2021 06:44:18 %S A325833 0,0,0,1,2,3,5,7,9,14,20,21,27,43,50,56,69,98,118,143,165,200,229,249, %T A325833 282,454,507,555,637,706,789,889,986,1406,1567,1690,1875,2396,2602, %U A325833 2841,3078,3672,3977,4344,4660,5079,5488,5840,6296,10424,11306 %N A325833 Number of integer partitions of n whose number of submultisets is less than n. %C A325833 The number of submultisets of a partition is the product of its multiplicities, each plus one. %C A325833 The Heinz numbers of these partitions are given by A325797. %H A325833 Alois P. Heinz, <a href="/A325833/b325833.txt">Table of n, a(n) for n = 0..500</a> %F A325833 a(n) = A000041(n) - A325832(n). %F A325833 For n even, a(n) = A325834(n) - A325830(n/2); for n odd, a(n) = A325834(n). %e A325833 The a(3) = 1 through a(9) = 14 partitions: %e A325833 (3) (4) (5) (6) (7) (8) (9) %e A325833 (22) (32) (33) (43) (44) (54) %e A325833 (41) (42) (52) (53) (63) %e A325833 (51) (61) (62) (72) %e A325833 (222) (322) (71) (81) %e A325833 (331) (332) (333) %e A325833 (511) (422) (432) %e A325833 (611) (441) %e A325833 (2222) (522) %e A325833 (531) %e A325833 (621) %e A325833 (711) %e A325833 (3222) %e A325833 (6111) %p A325833 b:= proc(n, i, p) option remember; `if`(n=0 or i=1, %p A325833 `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0, %p A325833 (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i)) %p A325833 end: %p A325833 a:= n-> add(b(n$2, k), k=0..n-1): %p A325833 seq(a(n), n=0..55); # _Alois P. Heinz_, Aug 17 2019 %t A325833 Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])<n&]],{n,0,30}] %t A325833 (* Second program: *) %t A325833 b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, %t A325833 If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = p/(j + 1); %t A325833 Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]]; %t A325833 a[n_] := Sum[b[n, n, k], {k, 0, n - 1}]; %t A325833 a /@ Range[0, 55] (* _Jean-François Alcover_, May 12 2021, after _Alois P. Heinz_ *) %Y A325833 Cf. A002033, A088880, A088881, A098859, A108917, A307699, A325694, A325792, A325797, A325828, A325830, A325831, A325832, A325834, A325836. %K A325833 nonn %O A325833 0,5 %A A325833 _Gus Wiseman_, May 29 2019