This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325834 #15 May 10 2021 07:41:05 %S A325834 0,0,1,1,3,3,6,7,12,14,21,21,37,43,51,56,90,98,130,143,180,200,230, %T A325834 249,403,454,508,555,657,706,826,889,1295,1406,1568,1690,2194,2396, %U A325834 2603,2841,3387,3672,4024,4344,4693,5079,5489,5840,9731,10424,11336,12093 %N A325834 Number of integer partitions of n whose number of submultisets is less than or equal to n. %C A325834 The number of submultisets of a partition is the product of its multiplicities, each plus one. %C A325834 The Heinz numbers of these partitions are given by A325798. %H A325834 Alois P. Heinz, <a href="/A325834/b325834.txt">Table of n, a(n) for n = 0..500</a> %F A325834 a(n) = A000041(n) - A325831(n). %F A325834 For n even, A325833(n) = a(n) - A325830(n/2); for n odd, A325833(n) = a(n). %e A325834 The a(2) = 1 through a(9) = 14 partitions: %e A325834 (2) (3) (4) (5) (6) (7) (8) (9) %e A325834 (22) (32) (33) (43) (44) (54) %e A325834 (31) (41) (42) (52) (53) (63) %e A325834 (51) (61) (62) (72) %e A325834 (222) (322) (71) (81) %e A325834 (411) (331) (332) (333) %e A325834 (511) (422) (432) %e A325834 (431) (441) %e A325834 (521) (522) %e A325834 (611) (531) %e A325834 (2222) (621) %e A325834 (5111) (711) %e A325834 (3222) %e A325834 (6111) %p A325834 b:= proc(n, i, p) option remember; `if`(n=0 or i=1, %p A325834 `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0, %p A325834 (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i)) %p A325834 end: %p A325834 a:= n-> add(b(n$2, k), k=0..n): %p A325834 seq(a(n), n=0..55); # _Alois P. Heinz_, Aug 17 2019 %t A325834 Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])<=n&]],{n,0,30}] %t A325834 (* Second program: *) %t A325834 b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, Function[w, b[w, Min[w, i - 1], Quotient[p, j + 1]]][n - i*j], 0], {j, 0, n/i}]]; %t A325834 a[n_] := Sum[b[n, n, k], {k, 0, n}]; %t A325834 a /@ Range[0, 55] (* _Jean-François Alcover_, May 10 2021, after _Alois P. Heinz_ *) %Y A325834 Cf. A002033, A088880, A088881, A108917, A126796, A307699, A325694, A325792, A325798, A325828, A325830, A325831, A325832, A325833, A325836. %K A325834 nonn %O A325834 0,5 %A A325834 _Gus Wiseman_, May 29 2019