This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325836 #13 May 12 2021 21:03:17 %S A325836 0,0,0,1,1,2,0,3,0,5,2,2,0,15,0,2,3,25,0,17,0,18,3,2,0,150,0,2,13,24, %T A325836 0,43,0,351,3,2,2,383,0,2,3,341,0,60,0,37,51,2,0,3733,0,31,3,42,0,460, %U A325836 1,633,3,2,0,1780,0,2,68,12460,0,87,0,55,3 %N A325836 Number of integer partitions of n having n - 1 different submultisets. %C A325836 The number of submultisets of a partition is the product of its multiplicities, each plus one. %C A325836 The Heinz numbers of these partitions are given by A325694. %H A325836 Alois P. Heinz, <a href="/A325836/b325836.txt">Table of n, a(n) for n = 0..1000</a> %e A325836 The a(3) = 1 through a(13) = 15 partitions (empty columns not shown): %e A325836 (3) (22) (32) (322) (432) (3322) (32222) (4432) %e A325836 (41) (331) (531) (4411) (71111) (5332) %e A325836 (511) (621) (5422) %e A325836 (3222) (5521) %e A325836 (6111) (6322) %e A325836 (6331) %e A325836 (6511) %e A325836 (7411) %e A325836 (8221) %e A325836 (8311) %e A325836 (9211) %e A325836 (33322) %e A325836 (55111) %e A325836 (322222) %e A325836 (811111) %p A325836 b:= proc(n, i, p) option remember; `if`(n=0 or i=1, %p A325836 `if`(n=p-1, 1, 0), add(`if`(irem(p, j+1, 'r')=0, %p A325836 (w-> b(w, min(w, i-1), r))(n-i*j), 0), j=0..n/i)) %p A325836 end: %p A325836 a:= n-> b(n$2,n-1): %p A325836 seq(a(n), n=0..80); # _Alois P. Heinz_, Aug 17 2019 %t A325836 Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])==n-1&]],{n,0,30}] %t A325836 (* Second program: *) %t A325836 b[n_, i_, p_] := b[n, i, p] = If[n == 0 || i == 1, %t A325836 If[n == p - 1, 1, 0], Sum[If[Mod[p, j + 1] == 0, r = p/(j + 1); %t A325836 Function[w, b[w, Min[w, i - 1], r]][n - i*j], 0], {j, 0, n/i}]]; %t A325836 a[n_] := b[n, n, n-1]; %t A325836 a /@ Range[0, 80] (* _Jean-François Alcover_, May 12 2021, after _Alois P. Heinz_ *) %Y A325836 Positions of zeros are A307699. %Y A325836 Cf. A002033, A088880, A088881, A108917, A325694, A325768, A325792, A325798, A325828, A325830, A325833, A325835. %K A325836 nonn %O A325836 0,6 %A A325836 _Gus Wiseman_, May 29 2019