cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325851 Number of (strict) compositions of n whose differences of all degrees are nonzero.

Original entry on oeis.org

1, 1, 1, 3, 4, 7, 12, 21, 35, 58, 102, 171, 284, 485, 819, 1355, 2301, 3884, 6528, 10983, 18380, 30824, 51851
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

The differences of a sequence are defined as if the sequence were increasing, so for example the differences of (6,3,1) are (-3,-2). The zeroth differences are the sequence itself, while k-th differences for k > 0 are the differences of the (k-1)-th differences. The differences of all degrees of a sequence are the union of its zeroth through m-th differences, where m is the length of the sequence.

Examples

			The a(1) = 1 through a(7) = 21 compositions:
  (1)  (2)  (3)   (4)    (5)    (6)     (7)
            (12)  (13)   (14)   (15)    (16)
            (21)  (31)   (23)   (24)    (25)
                  (121)  (32)   (42)    (34)
                         (41)   (51)    (43)
                         (131)  (132)   (52)
                         (212)  (141)   (61)
                                (213)   (124)
                                (231)   (142)
                                (312)   (151)
                                (1212)  (214)
                                (2121)  (232)
                                        (241)
                                        (313)
                                        (412)
                                        (421)
                                        (1213)
                                        (1312)
                                        (2131)
                                        (3121)
                                        (12121)
		

Crossrefs

The case for only degrees > 1 is A325875.

Programs

  • Mathematica
    Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],!MemberQ[Union@@Table[Differences[#,i],{i,Length[#]}],0]&]],{n,0,10}]