This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325853 #4 Jun 02 2019 00:49:11 %S A325853 1,1,2,3,5,7,11,14,21,28,39,51,69,88,116,148,193,242,309,385,484,596, %T A325853 746,915,1128,1371,1679,2030,2460,2964,3570,4268,5115,6088,7251,8584, %U A325853 10175,12002,14159,16619,19526,22846,26713,31153,36300,42169,48990,56728 %N A325853 Number of integer partitions of n such that every pair of distinct parts has a different quotient. %C A325853 Also the number of integer partitions of n such that every orderless pair of (not necessarily distinct) parts has a different product. %e A325853 The a(1) = 1 through a(7) = 14 partitions: %e A325853 (1) (2) (3) (4) (5) (6) (7) %e A325853 (11) (21) (22) (32) (33) (43) %e A325853 (111) (31) (41) (42) (52) %e A325853 (211) (221) (51) (61) %e A325853 (1111) (311) (222) (322) %e A325853 (2111) (321) (331) %e A325853 (11111) (411) (511) %e A325853 (2211) (2221) %e A325853 (3111) (3211) %e A325853 (21111) (4111) %e A325853 (111111) (22111) %e A325853 (31111) %e A325853 (211111) %e A325853 (1111111) %e A325853 The one partition of 7 for which not every pair of distinct parts has a different quotient is (4,2,1). %t A325853 Table[Length[Select[IntegerPartitions[n],UnsameQ@@Divide@@@Subsets[Union[#],{2}]&]],{n,0,20}] %Y A325853 The subset case is A325860. %Y A325853 The maximal case is A325861. %Y A325853 The integer partition case is A325853. %Y A325853 The strict integer partition case is A325854. %Y A325853 Heinz numbers of the counterexamples are given by A325994. %Y A325853 Cf. A002033, A103300, A108917, A143823, A196724, A325768, A325856, A325868, A325869, A325876. %K A325853 nonn %O A325853 0,3 %A A325853 _Gus Wiseman_, May 31 2019