cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325854 Number of strict integer partitions of n such that every pair of distinct parts has a different quotient.

Original entry on oeis.org

1, 1, 1, 2, 2, 3, 4, 4, 6, 8, 9, 12, 13, 16, 20, 23, 30, 33, 41, 47, 52, 61, 75, 90, 98, 116, 132, 151, 173, 206, 226, 263, 297, 337, 387, 427, 488, 555, 623, 697, 782, 886, 984, 1108, 1240, 1374, 1545, 1726, 1910, 2120, 2358, 2614, 2903, 3218, 3567, 3933
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Comments

Also the number of strict integer partitions of n such that every pair of (not necessarily distinct) parts has a different product.

Examples

			The a(1) = 1 through a(10) = 9 partitions (A = 10):
  (1)  (2)  (3)   (4)   (5)   (6)    (7)   (8)    (9)    (A)
            (21)  (31)  (32)  (42)   (43)  (53)   (54)   (64)
                        (41)  (51)   (52)  (62)   (63)   (73)
                              (321)  (61)  (71)   (72)   (82)
                                           (431)  (81)   (91)
                                           (521)  (432)  (532)
                                                  (531)  (541)
                                                  (621)  (631)
                                                         (721)
The two strict partitions of 13 such that not every pair of distinct parts has a different quotient are (9,3,1) and (6,4,2,1).
		

Crossrefs

The subset case is A325860.
The maximal case is A325861.
The integer partition case is A325853.
The strict integer partition case is A325854.
Heinz numbers of the counterexamples are given by A325994.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Divide@@@Subsets[Union[#],{2}]&]],{n,0,30}]