This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325855 #9 Mar 12 2021 17:49:46 %S A325855 1,1,1,2,2,3,4,5,6,8,10,12,14,18,22,25,31,37,44,53,59,69,83,100,111, %T A325855 129,152,173,198,232,260,302,342,386,448,498,565,646,728,819,918,1039, %U A325855 1164,1310,1462,1631,1830,2053,2282,2532,2825,3136,3482,3869,4300,4744 %N A325855 Number of strict integer partitions of n such that every pair of distinct parts has a different product. %H A325855 Fausto A. C. Cariboni, <a href="/A325855/b325855.txt">Table of n, a(n) for n = 0..250</a> %e A325855 The a(1) = 1 through a(10) = 10 partitions (A = 10): %e A325855 (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) %e A325855 (21) (31) (32) (42) (43) (53) (54) (64) %e A325855 (41) (51) (52) (62) (63) (73) %e A325855 (321) (61) (71) (72) (82) %e A325855 (421) (431) (81) (91) %e A325855 (521) (432) (532) %e A325855 (531) (541) %e A325855 (621) (631) %e A325855 (721) %e A325855 (4321) %t A325855 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Times@@@Subsets[Union[#],{2}]&]],{n,0,30}] %Y A325855 The subset case is A196724. %Y A325855 The maximal case is A325859. %Y A325855 The integer partition case is A325856. %Y A325855 The strict integer partition case is A325855. %Y A325855 Heinz numbers of the counterexamples are given by A325993. %Y A325855 Cf. A002033, A108917, A143823, A275972, A325854, A325858, A325876, A325877. %K A325855 nonn %O A325855 0,4 %A A325855 _Gus Wiseman_, May 31 2019