cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325856 Number of integer partitions of n such that every pair of distinct parts has a different product.

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 100, 133, 171, 225, 287, 369, 467, 592, 740, 931, 1155, 1435, 1767, 2178, 2661, 3254, 3953, 4798, 5793, 6991, 8390, 10069, 12022, 14346, 17054, 20255, 23960, 28334, 33390, 39308, 46148, 54116, 63295, 73967, 86224
Offset: 0

Views

Author

Gus Wiseman, May 31 2019

Keywords

Examples

			The five partitions of 15 not satisfying the condition are:
  (8,4,2,1)
  (6,4,3,2)
  (6,3,3,2,1)
  (6,3,2,2,1,1)
  (6,3,2,1,1,1,1)
		

Crossrefs

The subset case is A196724.
The maximal case is A325859.
The integer partition case is A325856.
The strict integer partition case is A325855.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@Times@@@Subsets[Union[#],{2}]&]],{n,0,30}]