This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325858 #9 Mar 17 2021 20:12:23 %S A325858 1,1,2,3,5,7,10,14,20,25,36,47,59,78,99,122,155,195,232,295,355,432, %T A325858 522,641,749,919,1076,1283,1506,1802,2067,2470,2835,3322,3815,4496, %U A325858 5070,5959,6736,7807,8849,10266,11499,13326,14928,17140,19193,22037,24519,28106 %N A325858 Number of Golomb partitions of n. %C A325858 We define a Golomb partition of n to be an integer partition of n such that every pair of distinct parts has a different difference. %C A325858 Also the number of integer partitions of n such that every orderless pair of (not necessarily distinct) parts has a different sum. %C A325858 The strict case is A325876. %H A325858 Fausto A. C. Cariboni, <a href="/A325858/b325858.txt">Table of n, a(n) for n = 0..250</a> %e A325858 The a(1) = 1 through a(7) = 14 partitions: %e A325858 (1) (2) (3) (4) (5) (6) (7) %e A325858 (11) (21) (22) (32) (33) (43) %e A325858 (111) (31) (41) (42) (52) %e A325858 (211) (221) (51) (61) %e A325858 (1111) (311) (222) (322) %e A325858 (2111) (411) (331) %e A325858 (11111) (2211) (421) %e A325858 (3111) (511) %e A325858 (21111) (2221) %e A325858 (111111) (4111) %e A325858 (22111) %e A325858 (31111) %e A325858 (211111) %e A325858 (1111111) %e A325858 The A000041(9) - a(9) = 5 non-Golomb partitions of 9 are: (531), (432), (3321), (32211), (321111). %t A325858 Table[Length[Select[IntegerPartitions[n],UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]],{n,0,30}] %Y A325858 The subset case is A143823. %Y A325858 The maximal case is A325879. %Y A325858 The integer partition case is A325858. %Y A325858 The strict integer partition case is A325876. %Y A325858 Heinz numbers of the counterexamples are given by A325992. %Y A325858 Cf. A002033, A108917, A325325, A325853, A325856, A325868. %K A325858 nonn %O A325858 0,3 %A A325858 _Gus Wiseman_, Jun 02 2019