cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325859 Number of maximal subsets of {1..n} such that every orderless pair of distinct elements has a different product.

This page as a plain text file.
%I A325859 #6 Jun 02 2019 00:49:45
%S A325859 1,1,1,1,1,1,4,4,11,11,28,28,60,60,140,241,299,299,572,572,971
%N A325859 Number of maximal subsets of {1..n} such that every orderless pair of distinct elements has a different product.
%e A325859 The a(1) = 1 through a(9) = 11 subsets:
%e A325859   {1}  {12}  {123}  {1234}  {12345}  {2356}   {23567}   {123457}  {235678}
%e A325859                                      {12345}  {123457}  {123578}  {1234579}
%e A325859                                      {12456}  {124567}  {124567}  {1235789}
%e A325859                                      {13456}  {134567}  {125678}  {1245679}
%e A325859                                                         {134567}  {1256789}
%e A325859                                                         {134578}  {1345679}
%e A325859                                                         {135678}  {1345789}
%e A325859                                                         {145678}  {1356789}
%e A325859                                                         {234578}  {1456789}
%e A325859                                                         {235678}  {2345789}
%e A325859                                                         {245678}  {2456789}
%t A325859 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
%t A325859 Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Times@@@Subsets[#,{2}]&]]],{n,0,15}]
%Y A325859 The subset case is A196724.
%Y A325859 The maximal case is A325859.
%Y A325859 The integer partition case is A325856.
%Y A325859 The strict integer partition case is A325855.
%Y A325859 Heinz numbers of the counterexamples are given by A325993.
%Y A325859 Cf. A002033, A108917, A143823, A275972, A325858, A325860, A325861, A325869, A325878, A325879, A325880.
%K A325859 nonn,more
%O A325859 0,7
%A A325859 _Gus Wiseman_, May 31 2019