This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325859 #6 Jun 02 2019 00:49:45 %S A325859 1,1,1,1,1,1,4,4,11,11,28,28,60,60,140,241,299,299,572,572,971 %N A325859 Number of maximal subsets of {1..n} such that every orderless pair of distinct elements has a different product. %e A325859 The a(1) = 1 through a(9) = 11 subsets: %e A325859 {1} {12} {123} {1234} {12345} {2356} {23567} {123457} {235678} %e A325859 {12345} {123457} {123578} {1234579} %e A325859 {12456} {124567} {124567} {1235789} %e A325859 {13456} {134567} {125678} {1245679} %e A325859 {134567} {1256789} %e A325859 {134578} {1345679} %e A325859 {135678} {1345789} %e A325859 {145678} {1356789} %e A325859 {234578} {1456789} %e A325859 {235678} {2345789} %e A325859 {245678} {2456789} %t A325859 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A325859 Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Times@@@Subsets[#,{2}]&]]],{n,0,15}] %Y A325859 The subset case is A196724. %Y A325859 The maximal case is A325859. %Y A325859 The integer partition case is A325856. %Y A325859 The strict integer partition case is A325855. %Y A325859 Heinz numbers of the counterexamples are given by A325993. %Y A325859 Cf. A002033, A108917, A143823, A275972, A325858, A325860, A325861, A325869, A325878, A325879, A325880. %K A325859 nonn,more %O A325859 0,7 %A A325859 _Gus Wiseman_, May 31 2019