This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325861 #5 Jun 02 2019 00:49:57 %S A325861 1,1,1,1,3,3,6,6,9,13,32,32,57,57,140,229,373,373,549,549,825 %N A325861 Number of maximal subsets of {1..n} such that every pair of distinct elements has a different quotient. %e A325861 The a(1) = 1 through a(9) = 13 subsets: %e A325861 {1} {12} {123} {123} {1235} {1235} {12357} {23457} {24567} %e A325861 {134} {1345} {1256} {12567} {24567} {123578} %e A325861 {234} {2345} {2345} {23457} {123578} {134567} %e A325861 {2356} {23567} {125678} {134578} %e A325861 {2456} {24567} {134567} {135678} %e A325861 {13456} {134567} {134578} {145678} %e A325861 {135678} {145789} %e A325861 {145678} {234579} %e A325861 {235678} {235678} %e A325861 {235789} %e A325861 {345789} %e A325861 {356789} %e A325861 {1256789} %t A325861 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A325861 Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Divide@@@Subsets[#,{2}]&]]],{n,0,10}] %Y A325861 The subset case is A325860. %Y A325861 The maximal case is A325861. %Y A325861 The integer partition case is A325853. %Y A325861 The strict integer partition case is A325854. %Y A325861 Heinz numbers of the counterexamples are given by A325994. %Y A325861 Cf. A002033, A103300, A143823, A196724, A325859, A325868, A325869. %K A325861 nonn,more %O A325861 0,5 %A A325861 _Gus Wiseman_, May 31 2019