cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325861 Number of maximal subsets of {1..n} such that every pair of distinct elements has a different quotient.

This page as a plain text file.
%I A325861 #5 Jun 02 2019 00:49:57
%S A325861 1,1,1,1,3,3,6,6,9,13,32,32,57,57,140,229,373,373,549,549,825
%N A325861 Number of maximal subsets of {1..n} such that every pair of distinct elements has a different quotient.
%e A325861 The a(1) = 1 through a(9) = 13 subsets:
%e A325861   {1}  {12}  {123}  {123}  {1235}  {1235}   {12357}   {23457}   {24567}
%e A325861                     {134}  {1345}  {1256}   {12567}   {24567}   {123578}
%e A325861                     {234}  {2345}  {2345}   {23457}   {123578}  {134567}
%e A325861                                    {2356}   {23567}   {125678}  {134578}
%e A325861                                    {2456}   {24567}   {134567}  {135678}
%e A325861                                    {13456}  {134567}  {134578}  {145678}
%e A325861                                                       {135678}  {145789}
%e A325861                                                       {145678}  {234579}
%e A325861                                                       {235678}  {235678}
%e A325861                                                                 {235789}
%e A325861                                                                 {345789}
%e A325861                                                                 {356789}
%e A325861                                                                 {1256789}
%t A325861 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)];
%t A325861 Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Divide@@@Subsets[#,{2}]&]]],{n,0,10}]
%Y A325861 The subset case is A325860.
%Y A325861 The maximal case is A325861.
%Y A325861 The integer partition case is A325853.
%Y A325861 The strict integer partition case is A325854.
%Y A325861 Heinz numbers of the counterexamples are given by A325994.
%Y A325861 Cf. A002033, A103300, A143823, A196724, A325859, A325868, A325869.
%K A325861 nonn,more
%O A325861 0,5
%A A325861 _Gus Wiseman_, May 31 2019