cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325862 Number of integer partitions of n such that every set of distinct parts has a different sum.

This page as a plain text file.
%I A325862 #5 Jun 02 2019 00:50:04
%S A325862 1,1,2,3,5,7,10,14,19,26,34,46,58,77,93,122,146,188,217,282,327,410,
%T A325862 470,596,673,848,947,1178,1325,1629,1798,2213,2444,2962,3247,3935,
%U A325862 4292,5149,5579,6674,7247,8590,9221,10964,11804,13870,14843,17480,18675,21866
%N A325862 Number of integer partitions of n such that every set of distinct parts has a different sum.
%C A325862 A knapsack partition (A108917, A299702) is an integer partition such that every submultiset has a different sum. The one non-knapsack partition counted under a(4) is (2,1,1).
%e A325862 The a(1) = 1 through a(7) = 14 partitions:
%e A325862   (1)  (2)   (3)    (4)     (5)      (6)       (7)
%e A325862        (11)  (21)   (22)    (32)     (33)      (43)
%e A325862              (111)  (31)    (41)     (42)      (52)
%e A325862                     (211)   (221)    (51)      (61)
%e A325862                     (1111)  (311)    (222)     (322)
%e A325862                             (2111)   (411)     (331)
%e A325862                             (11111)  (2211)    (421)
%e A325862                                      (3111)    (511)
%e A325862                                      (21111)   (2221)
%e A325862                                      (111111)  (4111)
%e A325862                                                (22111)
%e A325862                                                (31111)
%e A325862                                                (211111)
%e A325862                                                (1111111)
%e A325862 The three non-knapsack partitions counted under a(6) are:
%e A325862   (2,2,1,1)
%e A325862   (3,1,1,1)
%e A325862   (2,1,1,1,1)
%t A325862 Table[Length[Select[IntegerPartitions[n],UnsameQ@@Plus@@@Subsets[Union[#]]&]],{n,0,20}]
%Y A325862 Dominates A108917.
%Y A325862 Cf. A002033, A034444, A196723, A275972, A276024, A299702, A325592, A325856, A325863, A325864, A325865, A325877.
%K A325862 nonn
%O A325862 0,3
%A A325862 _Gus Wiseman_, May 31 2019