cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325863 Number of integer partitions of n such that every distinct non-singleton submultiset has a different sum.

This page as a plain text file.
%I A325863 #6 Jun 02 2019 00:50:11
%S A325863 1,1,2,3,5,6,9,11,15,17,24,29,31,41,51,58,67,84,91,117,117
%N A325863 Number of integer partitions of n such that every distinct non-singleton submultiset has a different sum.
%C A325863 A knapsack partition (A108917, A299702) is an integer partition such that every submultiset has a different sum. The one non-knapsack partition counted under a(4) is (2,1,1).
%e A325863 The partition (2,1,1,1) has non-singleton submultisets {1,2} and {1,1,1} with the same sum, so (2,1,1,1) is not counted under a(5).
%e A325863 The a(1) = 1 through a(8) = 15 partitions:
%e A325863   (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
%e A325863        (11)  (21)   (22)    (32)     (33)      (43)       (44)
%e A325863              (111)  (31)    (41)     (42)      (52)       (53)
%e A325863                     (211)   (221)    (51)      (61)       (62)
%e A325863                     (1111)  (311)    (222)     (322)      (71)
%e A325863                             (11111)  (321)     (331)      (332)
%e A325863                                      (411)     (421)      (422)
%e A325863                                      (3111)    (511)      (431)
%e A325863                                      (111111)  (2221)     (521)
%e A325863                                                (4111)     (611)
%e A325863                                                (1111111)  (2222)
%e A325863                                                           (3311)
%e A325863                                                           (5111)
%e A325863                                                           (41111)
%e A325863                                                           (11111111)
%e A325863 The 10 non-knapsack partitions counted under a(12):
%e A325863   (7,6,1)
%e A325863   (7,5,2)
%e A325863   (7,4,3)
%e A325863   (7,5,1,1)
%e A325863   (7,4,2,1)
%e A325863   (7,3,3,1)
%e A325863   (7,3,2,2)
%e A325863   (7,4,1,1,1)
%e A325863   (7,2,2,2,1)
%e A325863   (7,1,1,1,1,1,1,1)
%t A325863 Table[Length[Select[IntegerPartitions[n],UnsameQ@@Plus@@@Union[Subsets[#,{2,Length[#]}]]&]],{n,0,15}]
%Y A325863 Dominates A108917.
%Y A325863 Cf. A002033, A055212, A143823, A196723, A276024, A299702, A325856, A325862, A325864, A325865, A325866, A325867, A325877.
%K A325863 nonn,more
%O A325863 0,3
%A A325863 _Gus Wiseman_, May 31 2019