This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325863 #6 Jun 02 2019 00:50:11 %S A325863 1,1,2,3,5,6,9,11,15,17,24,29,31,41,51,58,67,84,91,117,117 %N A325863 Number of integer partitions of n such that every distinct non-singleton submultiset has a different sum. %C A325863 A knapsack partition (A108917, A299702) is an integer partition such that every submultiset has a different sum. The one non-knapsack partition counted under a(4) is (2,1,1). %e A325863 The partition (2,1,1,1) has non-singleton submultisets {1,2} and {1,1,1} with the same sum, so (2,1,1,1) is not counted under a(5). %e A325863 The a(1) = 1 through a(8) = 15 partitions: %e A325863 (1) (2) (3) (4) (5) (6) (7) (8) %e A325863 (11) (21) (22) (32) (33) (43) (44) %e A325863 (111) (31) (41) (42) (52) (53) %e A325863 (211) (221) (51) (61) (62) %e A325863 (1111) (311) (222) (322) (71) %e A325863 (11111) (321) (331) (332) %e A325863 (411) (421) (422) %e A325863 (3111) (511) (431) %e A325863 (111111) (2221) (521) %e A325863 (4111) (611) %e A325863 (1111111) (2222) %e A325863 (3311) %e A325863 (5111) %e A325863 (41111) %e A325863 (11111111) %e A325863 The 10 non-knapsack partitions counted under a(12): %e A325863 (7,6,1) %e A325863 (7,5,2) %e A325863 (7,4,3) %e A325863 (7,5,1,1) %e A325863 (7,4,2,1) %e A325863 (7,3,3,1) %e A325863 (7,3,2,2) %e A325863 (7,4,1,1,1) %e A325863 (7,2,2,2,1) %e A325863 (7,1,1,1,1,1,1,1) %t A325863 Table[Length[Select[IntegerPartitions[n],UnsameQ@@Plus@@@Union[Subsets[#,{2,Length[#]}]]&]],{n,0,15}] %Y A325863 Dominates A108917. %Y A325863 Cf. A002033, A055212, A143823, A196723, A276024, A299702, A325856, A325862, A325864, A325865, A325866, A325867, A325877. %K A325863 nonn,more %O A325863 0,3 %A A325863 _Gus Wiseman_, May 31 2019