This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325867 #22 Jan 13 2022 18:44:07 %S A325867 1,1,2,2,4,8,10,12,17,34,45,77,99,136,166,200,238,328,402,660,674, %T A325867 1166,1331,1966,2335,3286,3527,4762,5383,6900,7543,9087,10149,12239, %U A325867 13569,16452,17867,22869,23977,33881,33820,43423,48090,68683,67347,95176,97917,131666,136205 %N A325867 Number of maximal subsets of {1..n} containing n such that every subset has a different sum. %C A325867 These are maximal strict knapsack partitions (A275972, A326015) organized by maximum rather than sum. %H A325867 Fausto A. C. Cariboni, <a href="/A325867/b325867.txt">Table of n, a(n) for n = 1..150</a> (terms 1..121 from Bert Dobbelaere) %e A325867 The a(1) = 1 through a(8) = 12 subsets: %e A325867 {1} {1,2} {1,3} {1,2,4} {1,2,5} {1,2,6} {1,2,7} {1,3,8} %e A325867 {2,3} {2,3,4} {1,3,5} {1,3,6} {1,3,7} {1,5,8} %e A325867 {2,4,5} {1,4,6} {1,4,7} {5,7,8} %e A325867 {3,4,5} {2,3,6} {1,5,7} {1,2,4,8} %e A325867 {2,5,6} {2,3,7} {1,4,6,8} %e A325867 {3,4,6} {2,4,7} {2,3,4,8} %e A325867 {3,5,6} {2,6,7} {2,4,5,8} %e A325867 {4,5,6} {4,5,7} {2,4,7,8} %e A325867 {4,6,7} {3,4,6,8} %e A325867 {3,5,6,7} {3,6,7,8} %e A325867 {4,5,6,8} %e A325867 {4,6,7,8} %t A325867 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&)/@y]; %t A325867 Table[Length[fasmax[Select[Subsets[Range[n]],MemberQ[#,n]&&UnsameQ@@Plus@@@Subsets[#]&]]],{n,15}] %o A325867 (Python) %o A325867 def f(p0, n, m, cm): %o A325867 full, t, p = True, 0, p0 %o A325867 while p<n: %o A325867 sm = m<<p %o A325867 if (m & sm) == 0: %o A325867 t += f(p+1, n, m|sm, cm|(1<<p)) %o A325867 full=False %o A325867 p+=1 %o A325867 if full: %o A325867 for k in range(1, p0): %o A325867 if ((cm>>k)&1)==0 and ((m<<k)&m)==0: %o A325867 full=False %o A325867 break %o A325867 return 1 if full else t %o A325867 def a325867(n): %o A325867 return f(1, n, (1<<n)+1, 0) %o A325867 # _Bert Dobbelaere_, Mar 07 2021 %Y A325867 Cf. A002033, A108917, A143823, A143824, A196723, A275972. %Y A325867 Cf. A325860, A325861, A325864, A325865, A325866, A325867, A325880. %K A325867 nonn %O A325867 1,3 %A A325867 _Gus Wiseman_, Jun 01 2019 %E A325867 More terms from _Bert Dobbelaere_, Mar 07 2021