This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325870 #17 Apr 06 2024 14:59:17 %S A325870 11,13,17,31,43,61,73,97,127,151,181,193,211,241,257,331,337,421,461, %T A325870 463,521,541,547,577,601,641,683,757,881,991,1009,1021,1031,1093,1297, %U A325870 1621,1801,1871,1873,1933,2221,2417,2657,2731,2801,3001,3121,3361,3571,3697 %N A325870 Primes represented by non-quadratic cyclotomic binary forms. %H A325870 Peter Luschny, <a href="/A325870/b325870.txt">Table of n, a(n) for n = 1..185</a> %H A325870 Étienne Fouvry, Claude Levesque, and Michel Waldschmidt, <a href="http://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017 and <a href="https://doi.org/10.4064/aa171012-24-12">Acta Arithmetica</a>, online 15 March 2018. %o A325870 (PARI) %o A325870 isA325870(n) = %o A325870 { %o A325870 my(K, M, phi); %o A325870 K = floor(5.383*log(n)^1.161); %o A325870 M = floor(2*sqrt(n/3)); %o A325870 for(k = 3, K, %o A325870 phi = eulerphi(k); %o A325870 if(phi >= 4, %o A325870 for(y = 1, M, %o A325870 for(x = y + 1, M, %o A325870 if(n == y^phi*polcyclo(k, x/y), %o A325870 return(1) %o A325870 ))))); %o A325870 return(0) %o A325870 } %Y A325870 Cf. A296095, A293654, A325143, A325145. %K A325870 nonn %O A325870 1,1 %A A325870 _Peter Luschny_, May 26 2019 %E A325870 At the suggestion of _Michel Waldschmidt_