cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325870 Primes represented by non-quadratic cyclotomic binary forms.

This page as a plain text file.
%I A325870 #17 Apr 06 2024 14:59:17
%S A325870 11,13,17,31,43,61,73,97,127,151,181,193,211,241,257,331,337,421,461,
%T A325870 463,521,541,547,577,601,641,683,757,881,991,1009,1021,1031,1093,1297,
%U A325870 1621,1801,1871,1873,1933,2221,2417,2657,2731,2801,3001,3121,3361,3571,3697
%N A325870 Primes represented by non-quadratic cyclotomic binary forms.
%H A325870 Peter Luschny, <a href="/A325870/b325870.txt">Table of n, a(n) for n = 1..185</a>
%H A325870 Étienne Fouvry, Claude Levesque, and Michel Waldschmidt, <a href="http://arxiv.org/abs/1712.09019">Representation of integers by cyclotomic binary forms</a>, arXiv:1712.09019 [math.NT], 2017 and <a href="https://doi.org/10.4064/aa171012-24-12">Acta Arithmetica</a>, online 15 March 2018.
%o A325870 (PARI)
%o A325870 isA325870(n) =
%o A325870 {
%o A325870     my(K, M, phi);
%o A325870     K = floor(5.383*log(n)^1.161);
%o A325870     M = floor(2*sqrt(n/3));
%o A325870     for(k = 3, K,
%o A325870         phi = eulerphi(k);
%o A325870         if(phi >= 4,
%o A325870             for(y = 1, M,
%o A325870                 for(x = y + 1, M,
%o A325870                     if(n == y^phi*polcyclo(k, x/y),
%o A325870                         return(1)
%o A325870     )))));
%o A325870     return(0)
%o A325870 }
%Y A325870 Cf. A296095, A293654, A325143, A325145.
%K A325870 nonn
%O A325870 1,1
%A A325870 _Peter Luschny_, May 26 2019
%E A325870 At the suggestion of _Michel Waldschmidt_