This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325872 #30 Apr 18 2025 09:52:49 %S A325872 1,0,1,0,-2,1,0,7,-6,1,0,-35,40,-12,1,0,228,-315,130,-20,1,0,-1834, %T A325872 2908,-1485,320,-30,1,0,17582,-30989,18508,-5005,665,-42,1,0,-195866, %U A325872 375611,-253400,81088,-13650,1232,-56,1,0,2487832,-5112570,3805723,-1389612,279048,-32130,2100,-72,1 %N A325872 T(n, k) = [x^k] Sum_{k=0..n} Stirling1(n, k)*FallingFactorial(x, k), triangle read by rows, for n >= 0 and 0 <= k <= n. %H A325872 Michael De Vlieger, <a href="/A325872/b325872.txt">Table of n, a(n) for n = 0..11475</a> (rows 0 <= n <= 150, flattened). %H A325872 Gabriella Bretti, Pierpaolo Natalini and Paolo E. Ricci, <a href="https://doi.org/10.1515/gmj-2019-2007">A new set of Sheffer-Bell polynomials and logarithmic numbers</a>, Georgian Mathematical Journal, Feb. 2019, page 8. %H A325872 Marin Knežević, Vedran Krčadinac, and Lucija Relić, <a href="https://arxiv.org/abs/2012.15307">Matrix products of binomial coefficients and unsigned Stirling numbers</a>, arXiv:2012.15307 [math.CO], 2020. %F A325872 From _Seiichi Manyama_, Apr 18 2025: (Start) %F A325872 T(n,k) = Sum_{j=k..n} Stirling1(n,j) * Stirling1(j,k). %F A325872 E.g.f. of column k (with leading zeros): f(x)^k / k! with f(x) = log(1 + log(1 + x)). (End) %e A325872 Triangle starts: %e A325872 [0] [1] %e A325872 [1] [0, 1] %e A325872 [2] [0, -2, 1] %e A325872 [3] [0, 7, -6, 1] %e A325872 [4] [0, -35, 40, -12, 1] %e A325872 [5] [0, 228, -315, 130, -20, 1] %e A325872 [6] [0, -1834, 2908, -1485, 320, -30, 1] %e A325872 [7] [0, 17582, -30989, 18508, -5005, 665, -42, 1] %e A325872 [8] [0, -195866, 375611, -253400, 81088, -13650, 1232, -56, 1] %e A325872 [9] [0, 2487832, -5112570, 3805723, -1389612, 279048, -32130, 2100, -72, 1] %t A325872 p[n_] := Sum[StirlingS1[n, k] FactorialPower[x, k] , {k, 0, n}]; %t A325872 Table[CoefficientList[FunctionExpand[p[n]], x], {n, 0, 9}] // Flatten %o A325872 (Sage) %o A325872 def a_row(n): %o A325872 s = sum((-1)^(n-k)*stirling_number1(n,k)*falling_factorial(x,k) for k in (0..n)) %o A325872 return expand(s).list() %o A325872 [a_row(n) for n in (0..9)] %o A325872 (PARI) T(n, k) = sum(j=k, n, stirling(n, j, 1)*stirling(j, k, 1)); \\ _Seiichi Manyama_, Apr 18 2025 %Y A325872 Columns k=0..3 give A000007, (-1)^(n+1) * A003713(n), (-1)^n * A341587(n), (-1)^(n+1) * A341588(n). %Y A325872 Cf. A039814 (variant), A129062, A325873. %K A325872 sign,tabl %O A325872 0,5 %A A325872 _Peter Luschny_, Jun 27 2019