This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325876 #15 Sep 18 2023 02:07:32 %S A325876 1,1,1,2,2,3,3,5,6,6,9,11,10,15,17,18,24,29,27,38,43,47,53,67,67,84, %T A325876 87,102,113,137,131,167,179,204,213,261,263,315,327,377,413,476,472, %U A325876 564,602,677,707,820,845,969,1027,1131,1213,1364,1413,1596,1700,1858 %N A325876 Number of strict Golomb partitions of n. %C A325876 We define a Golomb partition of n to be an integer partition of n such that every ordered pair of distinct parts has a different difference. %C A325876 Also the number of strict integer partitions of n such that every orderless pair of (not necessarily distinct) parts has a different sum. %C A325876 The non-strict case is A325858. %H A325876 Fausto A. C. Cariboni, <a href="/A325876/b325876.txt">Table of n, a(n) for n = 0..500</a> %e A325876 The a(2) = 1 through a(11) = 11 partitions (A = 10, B = 11): %e A325876 (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) %e A325876 (21) (31) (32) (42) (43) (53) (54) (64) (65) %e A325876 (41) (51) (52) (62) (63) (73) (74) %e A325876 (61) (71) (72) (82) (83) %e A325876 (421) (431) (81) (91) (92) %e A325876 (521) (621) (532) (A1) %e A325876 (541) (542) %e A325876 (631) (632) %e A325876 (721) (641) %e A325876 (731) %e A325876 (821) %t A325876 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]],{n,0,30}] %o A325876 (Python) %o A325876 from collections import Counter %o A325876 from itertools import combinations %o A325876 from sympy.utilities.iterables import partitions %o A325876 def A325876(n): return sum(1 for p in partitions(n) if max(list(Counter(abs(d[0]-d[1]) for d in combinations(list(Counter(p).elements()),2)).values()),default=1)==1)-(n&1^1) if n else 1 # _Chai Wah Wu_, Sep 17 2023 %Y A325876 The subset case is A143823. %Y A325876 The maximal case is A325879. %Y A325876 The integer partition case is A325858. %Y A325876 The strict integer partition case is A325876. %Y A325876 Heinz numbers of the counterexamples are given by A325992. %Y A325876 Cf. A002033, A275972, A325325, A325853, A325856, A325868. %K A325876 nonn %O A325876 0,4 %A A325876 _Gus Wiseman_, Jun 02 2019