This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325879 #26 Mar 27 2025 19:15:11 %S A325879 1,1,1,3,3,6,14,20,24,36,64,110,176,238,294,370,504,736,1086,1592, %T A325879 2240,2982,3788,4700,5814,7322,9396,12336,16552,22192,29310,38046, %U A325879 48368,60078,73722,89416,108208,131310,160624,198002,247408,310410,390924,490818,613344,758518 %N A325879 Number of maximal subsets of {1..n} such that every ordered pair of distinct elements has a different difference. %C A325879 Also the number of maximal subsets of {1..n} such that every orderless pair of (not necessarily distinct) elements has a different sum. %H A325879 Fausto A. C. Cariboni, <a href="/A325879/b325879.txt">Table of n, a(n) for n = 0..100</a> %H A325879 Wikipedia, <a href="https://en.wikipedia.org/wiki/Sidon_sequence">Sidon sequence</a>. %H A325879 <a href="/index/Go#Golomb">Index entries for sequences related to Golomb rulers</a>. %e A325879 The a(0) = 1 through a(7) = 20 subsets: %e A325879 {} {1} {1,2} {1,2} {2,3} {1,2,4} {1,2,4} {1,2,4} %e A325879 {1,3} {1,2,4} {1,2,5} {1,2,5} {1,2,6} %e A325879 {2,3} {1,3,4} {1,3,4} {1,2,6} {1,3,4} %e A325879 {1,4,5} {1,3,4} {1,4,5} %e A325879 {2,3,5} {1,3,6} {1,4,6} %e A325879 {2,4,5} {1,4,5} {1,5,6} %e A325879 {1,4,6} {2,3,5} %e A325879 {1,5,6} {2,3,6} %e A325879 {2,3,5} {2,3,7} %e A325879 {2,3,6} {2,4,5} %e A325879 {2,4,5} {2,4,7} %e A325879 {2,5,6} {2,5,6} %e A325879 {3,4,6} {2,6,7} %e A325879 {3,5,6} {3,4,6} %e A325879 {3,4,7} %e A325879 {3,5,6} %e A325879 {4,5,7} %e A325879 {4,6,7} %e A325879 {1,2,5,7} %e A325879 {1,3,6,7} %t A325879 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A325879 Table[Length[fasmax[Select[Subsets[Range[n]],UnsameQ@@Subtract@@@Subsets[Union[#],{2}]&]]],{n,0,10}] %o A325879 (PARI) %o A325879 a(n)={ %o A325879 my(ismaxl(b,w)=for(k=1, n, if(!bittest(b,k) && !bitand(w,bitor(b,1<<k)<<k), return(0))); 1); %o A325879 my(recurse(k,b,w)= %o A325879 if(k > n, ismaxl(b,w), %o A325879 my(s=self()(k+1, b,w)); %o A325879 b+=1<<k; if(!bitand(w,b<<k), s+=self()(k+1, b, w + (b<<k))); %o A325879 s); %o A325879 ); %o A325879 recurse(1,0,0); %o A325879 } \\ _Andrew Howroyd_, Mar 27 2025 %Y A325879 The subset case is A143823. %Y A325879 The integer partition case is A325858. %Y A325879 The strict integer partition case is A325876. %Y A325879 Heinz numbers of the counterexamples are given by A325992. %Y A325879 Cf. A002033, A108917, A143824, A196723, A382397. %Y A325879 Cf. A325859, A325861, A325865, A325867, A325869, A325878, A325992. %K A325879 nonn %O A325879 0,4 %A A325879 _Gus Wiseman_, Jun 02 2019 %E A325879 a(21)-a(45) from _Fausto A. C. Cariboni_, Feb 08 2022