This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325904 #33 Oct 17 2019 13:57:55 %S A325904 1,0,-3,-8,15,-91,-54,2531,-17021,43035,-66258,1958757,-24572453, %T A325904 146991979,-287482322,-3148566077,35506973089,-198639977241, %U A325904 1006345648929,-8250266425561,76832268802555,-517564939540551,1890772860334557,3323588929061820,-104547561696315008,907385094824827328,-6313246535826877248 %N A325904 Generator sequence for A100982. %C A325904 The name of this sequence is derived from its main purpose as a formula for A100982 (see link). Both formulas below stem from Mike Winkler's 2017 paper on the 3x+1 problem (see below), in which a recursive definition of A100982 and A076227 is created in 2-D space. These formulas redefine the sequences in terms of this 1-D recursive sequence. %H A325904 Mike Winkler, <a href="https://arxiv.org/abs/1709.03385">The algorithmic structure of the finite stopping time behavior of the 3x + 1 function</a>, arXiv:1709.03385 [math.GM], 2017. %F A325904 a(0)=1, a(1)=0, a(n) = -Sum_{k=0..n-1} a(k)*binomial(A325913(n)+n-k-2, A325913(n)-2) for n>1. %o A325904 (Python) %o A325904 import math %o A325904 numberOfTerms = 20 %o A325904 L6 = [1,0] %o A325904 def c(n): %o A325904 return math.floor(n/(math.log2(3)-1)) %o A325904 def p(a,b): %o A325904 return math.factorial(a)/(math.factorial(a-b)*math.factorial(b)) %o A325904 def anotherTerm(newTermCount): %o A325904 global L6 %o A325904 for a in range(newTermCount+1-len(L6)): %o A325904 y = len(L6) %o A325904 newElement = 0 %o A325904 for k in range(y): %o A325904 newElement -= int(L6[k]*p(c(y)+y-k-2, c(y)-2)) %o A325904 L6.append(newElement) %o A325904 anotherTerm(numberOfTerms) %o A325904 print("A325904") %o A325904 for a in range(numberOfTerms+1): %o A325904 print(a, "|", L6[a]) %o A325904 (SageMath) %o A325904 @cached_function %o A325904 def a(n): %o A325904 if n < 2: return 0^n %o A325904 A = floor(n/(log(3, 2) - 1)) - 2 %o A325904 return -sum(a(k)*binomial(A + n - k, A) for k in (0..n-1)) %o A325904 [a(n) for n in range(100)] # _Peter Luschny_, Sep 10 2019 %Y A325904 Cf. A020914, A076227, A100982. %K A325904 sign %O A325904 0,3 %A A325904 _Benjamin Lombardo_, Sep 08 2019