This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325926 #14 Oct 12 2020 14:58:54 %S A325926 0,0,0,0,0,2,8,26,76,212,568,1504,3968,10526,28192,76398,209268, %T A325926 578396,1609376,4499336,12620080,35482718,99958776,282107702, %U A325926 797637908,2259545652,6413273704,18238099464,51963195440,148315593178,424034498656,1214186436154 %N A325926 Number of Motzkin excursions of length n with an even number of humps and an odd number of peaks. %C A325926 A Motzkin excursion is a lattice path with steps from the set {D=-1, H=0, U=1} that starts at (0,0), never goes below the x-axis, and terminates at the altitude 0. %C A325926 A peak is an occurrence of the pattern UD. %C A325926 A hump is an occurrence of the pattern UHH...HD (the number of Hs in the pattern is not fixed, and can be 0). %H A325926 Andrei Asinowski, Axel Bacher, Cyril Banderier, Bernhard Gittenberger, <a href="https://lipn.univ-paris13.fr/~banderier/Papers/patterns2019.pdf">Analytic combinatorics of lattice paths with forbidden patterns, the vectorial kernel method, and generating functions for pushdown automata</a>, Algorithmica (2019). %F A325926 G.f.: ( -sqrt((1-t)^2*(1+t)*(1-3*t)) + sqrt((1-2*t)*(1+t+2*t^2)*(1-t)^3) - sqrt((1+t^2)*(1-4*t+5*t^2)) + sqrt((1-2*t)*(1-2*t-t^2)*(1-t^2+2*t^3)) ) / (8*t^2*(1-t)). %F A325926 a(n) ~ 3^(n + 3/2) / (8*sqrt(Pi)*n^(3/2)). - _Vaclav Kotesovec_, Aug 09 2019 %e A325926 For n=5, the a(5)=2 paths are UDUHD and UHDUD (2 humps, 1 peak). %e A325926 For n=6, we have a(6)=8 paths: 6 paths obtained by a permutation of {UD, UHD, H}, and 2 paths obtained by a permutation of {UD, UHHD}. %t A325926 CoefficientList[Series[(1/(8*(1 - x)*x^2))* (-Sqrt[(1 - 3*x)*(1 - x)^2*(1 + x)] + Sqrt[(1 - 2*x)*(1 - x)^3*(1 + x + 2*x^2)] - Sqrt[(1 + x^2)*(1 - 4*x + 5*x^2)] + Sqrt[(1 - 2*x)*(1 - 2*x - x^2)*(1 - x^2 + 2*x^3)]), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Aug 09 2019 *) %Y A325926 Motzkin meanders and excursions with restrictions on the number of humps and peaks: %Y A325926 A325921: Meanders, #humps=EVEN, #peaks=EVEN. %Y A325926 A325922: Excursions, #humps=EVEN, #peaks=EVEN. %Y A325926 A325923: Meanders, #humps=ODD, #peaks=EVEN. %Y A325926 A325924: Excursions, #humps=ODD, #peaks=EVEN. %Y A325926 A325925: Meanders, #humps=EVEN, #peaks=ODD. %Y A325926 A325926 (this sequence): Excursions, #humps=EVEN, #peaks=ODD. %Y A325926 A325927: Meanders, #humps=ODD, #peaks=ODD. %Y A325926 A325928: Excursions, #humps=ODD, #peaks=ODD. %K A325926 nonn %O A325926 0,6 %A A325926 _Andrei Asinowski_, Jul 14 2019