This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325932 #67 Feb 16 2025 08:33:58 %S A325932 126,211,288,377,703,869,964,1933,1935,2675,3970,4265,4657,5225,6618, %T A325932 8374,8569,18014,25461,28812,36719,50512,74399,83452,90051,103715, %U A325932 146919,164189,185011,206716 %N A325932 Indices k of Gram points g(k) for successive negative maximal values of the Riemann zeta function on the critical line. %C A325932 This sequence is subset of A114856. %C A325932 The n-th Gram point occurs when the Riemann-Siegel theta function is equal to Pi*n. %C A325932 Gram points occur when the imaginary part of the Riemann zeta function on the critical line is zero but the real part is nonzero. %C A325932 For very small values of Riemann zeta function at Gram points, the distance to the nearest zero of Riemann zeta function is very small. %C A325932 For indices of successive positive minima of the Riemann zeta function at Gram points g(n) see A326890. %C A325932 For indices of successive positive maxima of the Riemann zeta function at Gram points g(n) see A327543. %C A325932 Computed record value of this sequence is a(n)=2601005843707 with value zeta[1/2+I*g(a(n))]= -119.630432107724 (Kotnik 2003). %H A325932 T. Kotnik, <a href="https://doi.org/10.1090/S0025-5718-03-01568-0">Computational estimation of the order of zeta(1/2+it)</a>, Math. Comp. 73 (2004), 949-956. %H A325932 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/GramPoint.html">Gram Point</a>. %e A325932 n | a(n) | Zeta[1/2+I*g(a(n))] | g(a(n)) %e A325932 -=---+--------+----------------------+------------ %e A325932 1 | 126 | -0.02762949885719994 | 282.4547208 %e A325932 2 | 211 | -0.38288957164454790 | 415.6014600 %e A325932 3 | 288 | -0.66545881605404208 | 527.6973416 %e A325932 4 | 377 | -0.83760106086093435 | 650.8910448 %e A325932 5 | 703 | -1.00455040613260376 | 1068.189532 %e A325932 6 | 869 | -1.27120822682165464 | 1267.847910 %e A325932 7 | 964 | -1.392200186869156 | 1379.419269 %e A325932 8 | 1933 | -1.413878403700959 | 2446.574386 %e A325932 9 | 1935 | -1.881639907182627 | 2448.681071 %e A325932 10 | 2675 | -2.062586314581326 | 3210.042865 %e A325932 11 | 3970 | -2.1482691132271 | 4479.035743 %e A325932 12 | 4265 | -2.1659698746279 | 4759.875045 %e A325932 13 | 4657 | -2.2554659693900 | 5129.256083 %e A325932 14 | 5225 | -2.4955901590107 | 5657.609720 %e A325932 15 | 6618 | -2.60670539564937 | 6924.738490 %e A325932 16 | 8374 | -2.95430731615046 | 8476.646123 %t A325932 ff = 0; aa = {}; Do[kk = Re[Zeta[1/2 + I N[InverseFunction[RiemannSiegelTheta][n Pi], 10]]]; %t A325932 If[kk < ff, AppendTo[aa, n]; ff = kk], {n, 1, 450000}]; aa %Y A325932 Cf. A114856, A254297, A255739, A255742, A325932, A326502, A326890, A326891, A327543. %K A325932 nonn %O A325932 1,1 %A A325932 _Artur Jasinski_, Sep 16 2019