A332050 Number of ways to arrange Palago tiles in a triangle of side length n, up to rotation, reflection, and swapping colors.
1, 1, 7, 129, 9882, 2391930, 1743402771, 3812799008214, 25015772571200361, 492385451093553791610, 29074868501520453489499806, 5150525730438768829942800034449, 2737200544710109691113626131721984885, 4363981784043856212945753449232929426200329
Offset: 0
Keywords
Links
- Peter Kagey, Table of n, a(n) for n = 0..64
- Code Golf Stack Exchange, Counting creatures on a hexagonal tiling
- Peter Kagey, Example of for n = 2.
Programs
-
Mathematica
a[n_] = (3^Binomial[n + 1, 2] + 3*3^((Binomial[n + 1, 2] - Ceiling[n/2])/2) + If[Mod[n, 3] == 1, 0, 2*3^(Binomial[n + 1, 2]/3)])/6
Comments