cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325938 a(n) = omega(n)^tau(n), where omega=A001221 and tau=A000005.

This page as a plain text file.
%I A325938 #14 Sep 14 2019 14:39:29
%S A325938 0,1,1,1,1,16,1,1,1,16,1,64,1,16,16,1,1,64,1,64,16,16,1,256,1,16,1,64,
%T A325938 1,6561,1,1,16,16,16,512,1,16,16,256,1,6561,1,64,64,16,1,1024,1,64,16,
%U A325938 64,1,256,16,256,16,16,1,531441,1,16,64,1,16,6561,1,64
%N A325938 a(n) = omega(n)^tau(n), where omega=A001221 and tau=A000005.
%H A325938 Hauke Löffler, <a href="/A325938/b325938.txt">Table of n, a(n) for n = 1..10000</a>
%F A325938 a(n) = A001221(n) ^ A000005(n).
%e A325938 a(5) = 1; 5 has one distinct prime divisor {5} and two divisors {1,5}, so a(5) = 1^2 = 1.
%e A325938 a(6) = 16; 6 has two distinct prime divisors {2,3} and four divisors {1,2,3,6}, so a(6) = 2^4 = 16.
%o A325938 (SageMath)
%o A325938 [ len(prime_divisors(x))^(len(divisors(x))) for x in range(1,20) ]
%o A325938 (PARI) a(n) = {omega(n)^numdiv(n)} \\ _Andrew Howroyd_, Sep 09 2019
%Y A325938 Cf. A000005(tau), A001221(omega), A110088, A248577.
%K A325938 nonn
%O A325938 1,6
%A A325938 _Hauke Löffler_, Sep 09 2019