This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325981 #26 Jun 18 2019 18:12:23 %S A325981 45,495,585,765,855,1305,18837,21525,31635,38295,45315,50445,51255, %T A325981 60435,63495,68085,77265,96615,1403115,2446353,3411975,3999465, %U A325981 4091745,4233537,4287255,4631319,10813425,10967085,11490345,15578199,16143309,16329645,16633071,17179515,17311203,17355915,21159075,21933975,22579725 %N A325981 Odd composites for which gcd(A325977(n), A325978(n)) is equal to abs(A325977(n)). %C A325981 Provided that A325977 and A325978 are never zero on same n, these are odd composite numbers n such that A325977(n) is not zero and divides A325978(n). %C A325981 Based on the first 147 terms it seems that this sequence is a subsequence of A072357, that is each term has exactly one prime factor with exponent 2, with one or more other prime factors that are all unitary (i.e., each term satisfies A001222(x) - A001221(x) = 1). On the other hand, it has been proved that no odd perfect number, if such numbers exist at all, can have such a factorization (see A326137 and a link to P. P. Nielsen's paper there). %C A325981 Nineteen initial terms factorize as: %C A325981 45 = 3^2 * 5^1, %C A325981 495 = 3^2 * 5^1 * 11^1, %C A325981 585 = 3^2 * 5^1 * 13^1, %C A325981 765 = 3^2 * 5^1 * 17^1, %C A325981 855 = 3^2 * 5^1 * 19^1, %C A325981 1305 = 3^2 * 5^1 * 29^1, %C A325981 18837 = 3^2 * 7^1 * 13^1 * 23^1, %C A325981 21525 = 3^1 * 5^2 * 7^1 * 41^1, %C A325981 31635 = 3^2 * 5^1 * 19^1 * 37^1, %C A325981 38295 = 3^2 * 5^1 * 23^1 * 37^1, %C A325981 45315 = 3^2 * 5^1 * 19^1 * 53^1, %C A325981 50445 = 3^2 * 5^1 * 19^1 * 59^1, %C A325981 51255 = 3^2 * 5^1 * 17^1 * 67^1, %C A325981 60435 = 3^2 * 5^1 * 17^1 * 79^1, %C A325981 63495 = 3^2 * 5^1 * 17^1 * 83^1, %C A325981 68085 = 3^2 * 5^1 * 17^1 * 89^1, %C A325981 77265 = 3^2 * 5^1 * 17^1 * 101^1, %C A325981 96615 = 3^2 * 5^1 * 19^1 * 113^1, %C A325981 1403115 = 3^1 * 5^1 * 7^2 * 23^1 * 83^1, %C A325981 and the 62nd term as a(62) = 2919199437 = 3^2 * 7^1 * 11^1 * 43^1 * 163^1 * 601^1. %C A325981 If we select a subsequence of terms for which the quotient A325978(n)/A325977(n) is positive, then we are left with the following numbers: 495, 585, 31635, 38295, 45315, 51255, 60435, 63495, 1403115, 3999465, etc. which is a subsequence of A326070. %H A325981 Antti Karttunen (terms 1-62) & Giovanni Resta, <a href="/A325981/b325981.txt">Table of n, a(n) for n = 1..147</a> %H A325981 <a href="/index/O#opnseqs">Index entries for sequences where any odd perfect numbers must occur</a> %o A325981 (PARI) %o A325981 A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448 %o A325981 A034460(n) = (A034448(n) - n); %o A325981 A048250(n) = factorback(apply(p -> p+1,factor(n)[,1])); %o A325981 A325313(n) = (A048250(n) - n); %o A325981 A325977(n) = ((A034460(n)+A325313(n))/2); %o A325981 A162296(n) = sumdiv(n, d, d*(1-issquarefree(d))); %o A325981 A325314(n) = (n - A162296(n)); %o A325981 A048146(n) = (sigma(n)-A034448(n)); %o A325981 A325814(n) = (n-A048146(n)); %o A325981 A325978(n) = ((A325314(n)+A325814(n))/2); %o A325981 A325975(n) = gcd(A325977(n), A325978(n)); %o A325981 isA325981(n) = ((n%2)&&!isprime(n)&&(A325975(n)==abs(A325977(n)))); %o A325981 \\ Or alternatively as: %o A325981 isA325981(n) = if(!(n%2)||isprime(n),0,my(x = A325977(n), y = A325978(n)); (!x&&!y)||(x&&!(y%x))); %Y A325981 Cf. A072357, A228058, A325973, A325974, A325975, A325977, A325978, A325979, A326064, A326070, A326071, A326137. %K A325981 nonn %O A325981 1,1 %A A325981 _Antti Karttunen_, Jun 02 2019