This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325986 #7 May 31 2019 05:34:09 %S A325986 1,2,6,30,42,210,330,390,462,510,546,714,798,2310,2730,3570,3990,4290, %T A325986 4830,5610,6006,6090,6270,6510,6630,7410,7590,7854,8778,8970,9282, %U A325986 9570,9690,10230,10374,10626,11310,11730,12090,12210,12558,13398,13566,14322,14430 %N A325986 Heinz numbers of complete strict integer partitions. %C A325986 Strict partitions are counted by A000009, while complete partitions are counted by A126796. %C A325986 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A325986 An integer partition of n is complete (A126796, A325781) if every number from 0 to n is the sum of some submultiset of the parts. %C A325986 The enumeration of these partitions by sum is given by A188431. %F A325986 Intersection of A005117 (strict partitions) and A325781 (complete partitions). %e A325986 The sequence of terms together with their prime indices begins: %e A325986 1: {} %e A325986 2: {1} %e A325986 6: {1,2} %e A325986 30: {1,2,3} %e A325986 42: {1,2,4} %e A325986 210: {1,2,3,4} %e A325986 330: {1,2,3,5} %e A325986 390: {1,2,3,6} %e A325986 462: {1,2,4,5} %e A325986 510: {1,2,3,7} %e A325986 546: {1,2,4,6} %e A325986 714: {1,2,4,7} %e A325986 798: {1,2,4,8} %e A325986 2310: {1,2,3,4,5} %e A325986 2730: {1,2,3,4,6} %e A325986 3570: {1,2,3,4,7} %e A325986 3990: {1,2,3,4,8} %e A325986 4290: {1,2,3,5,6} %e A325986 4830: {1,2,3,4,9} %e A325986 5610: {1,2,3,5,7} %t A325986 hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p] k]]; %t A325986 Select[Range[1000],SquareFreeQ[#]&&Union[hwt/@Divisors[#]]==Range[0,hwt[#]]&] %Y A325986 Cf. A002033, A056239, A103295, A112798, A126796, A188431, A299702, A304793. %Y A325986 Cf. A325780, A325781, A325782, A325788, A325790, A325988. %K A325986 nonn %O A325986 1,2 %A A325986 _Gus Wiseman_, May 30 2019