cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325987 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k submultisets, k > 0.

This page as a plain text file.
%I A325987 #16 Aug 22 2019 09:58:43
%S A325987 1,0,1,0,1,1,0,1,0,2,0,1,1,1,1,1,0,1,0,2,0,3,0,1,0,1,1,3,0,1,1,2,1,1,
%T A325987 0,1,0,3,0,3,0,4,0,1,0,3,0,1,1,3,1,3,0,3,2,1,0,4,0,1,1,1,0,1,0,5,0,3,
%U A325987 0,5,0,3,0,6,0,1,0,3,0,2,0,1,0,1,1,4,0
%N A325987 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k submultisets, k > 0.
%C A325987 The number of submultisets of a partition is the product of its multiplicities, each plus one.
%H A325987 Alois P. Heinz, <a href="/A325987/b325987.txt">Rows n = 0..60, flattened</a>
%F A325987 Sum_{k=1..A088881(n)} k * T(n,k) = A000712(n). - _Alois P. Heinz_, Aug 17 2019
%e A325987 Triangle begins:
%e A325987   1
%e A325987   0 1
%e A325987   0 1 1
%e A325987   0 1 0 2
%e A325987   0 1 1 1 1 1
%e A325987   0 1 0 2 0 3 0 1
%e A325987   0 1 1 3 0 1 1 2 1 1
%e A325987   0 1 0 3 0 3 0 4 0 1 0 3
%e A325987   0 1 1 3 1 3 0 3 2 1 0 4 0 1 1 1
%e A325987   0 1 0 5 0 3 0 5 0 3 0 6 0 1 0 3 0 2 0 1
%e A325987   0 1 1 4 0 5 0 7 2 1 1 4 0 1 2 5 0 3 0 2 1 0 0 2
%e A325987 Row n = 7 counts the following partitions (empty columns not shown):
%e A325987   (7)  (43)  (322)  (421)      (31111)  (3211)
%e A325987        (52)  (331)  (2221)              (22111)
%e A325987        (61)  (511)  (4111)              (211111)
%e A325987                     (1111111)
%t A325987 Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])==k&]],{n,0,10},{k,1,Max@@(Times@@(1+Length/@Split[#])&)/@IntegerPartitions[n]}]
%Y A325987 Row lengths are A088881.
%Y A325987 Row sums are A000041.
%Y A325987 Diagonal n = k is A325830 interspersed with zeros.
%Y A325987 Diagonal n + 1 = k is A325828.
%Y A325987 Diagonal n - 1 = k is A325836.
%Y A325987 Column k = 3 appears to be A137719.
%Y A325987 Cf. A000005, A000712, A002033, A005179, A088880, A108917, A126796.
%Y A325987 Cf. A325694, A325792, A325793, A325831, A325832, A325833, A325834.
%K A325987 nonn,look,tabf
%O A325987 0,10
%A A325987 _Gus Wiseman_, May 30 2019