This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325987 #16 Aug 22 2019 09:58:43 %S A325987 1,0,1,0,1,1,0,1,0,2,0,1,1,1,1,1,0,1,0,2,0,3,0,1,0,1,1,3,0,1,1,2,1,1, %T A325987 0,1,0,3,0,3,0,4,0,1,0,3,0,1,1,3,1,3,0,3,2,1,0,4,0,1,1,1,0,1,0,5,0,3, %U A325987 0,5,0,3,0,6,0,1,0,3,0,2,0,1,0,1,1,4,0 %N A325987 Irregular triangle read by rows where T(n,k) is the number of integer partitions of n with k submultisets, k > 0. %C A325987 The number of submultisets of a partition is the product of its multiplicities, each plus one. %H A325987 Alois P. Heinz, <a href="/A325987/b325987.txt">Rows n = 0..60, flattened</a> %F A325987 Sum_{k=1..A088881(n)} k * T(n,k) = A000712(n). - _Alois P. Heinz_, Aug 17 2019 %e A325987 Triangle begins: %e A325987 1 %e A325987 0 1 %e A325987 0 1 1 %e A325987 0 1 0 2 %e A325987 0 1 1 1 1 1 %e A325987 0 1 0 2 0 3 0 1 %e A325987 0 1 1 3 0 1 1 2 1 1 %e A325987 0 1 0 3 0 3 0 4 0 1 0 3 %e A325987 0 1 1 3 1 3 0 3 2 1 0 4 0 1 1 1 %e A325987 0 1 0 5 0 3 0 5 0 3 0 6 0 1 0 3 0 2 0 1 %e A325987 0 1 1 4 0 5 0 7 2 1 1 4 0 1 2 5 0 3 0 2 1 0 0 2 %e A325987 Row n = 7 counts the following partitions (empty columns not shown): %e A325987 (7) (43) (322) (421) (31111) (3211) %e A325987 (52) (331) (2221) (22111) %e A325987 (61) (511) (4111) (211111) %e A325987 (1111111) %t A325987 Table[Length[Select[IntegerPartitions[n],Times@@(1+Length/@Split[#])==k&]],{n,0,10},{k,1,Max@@(Times@@(1+Length/@Split[#])&)/@IntegerPartitions[n]}] %Y A325987 Row lengths are A088881. %Y A325987 Row sums are A000041. %Y A325987 Diagonal n = k is A325830 interspersed with zeros. %Y A325987 Diagonal n + 1 = k is A325828. %Y A325987 Diagonal n - 1 = k is A325836. %Y A325987 Column k = 3 appears to be A137719. %Y A325987 Cf. A000005, A000712, A002033, A005179, A088880, A108917, A126796. %Y A325987 Cf. A325694, A325792, A325793, A325831, A325832, A325833, A325834. %K A325987 nonn,look,tabf %O A325987 0,10 %A A325987 _Gus Wiseman_, May 30 2019