This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325991 #8 Jun 02 2019 23:41:00 %S A325991 210,420,462,630,840,858,910,924,1050,1155,1260,1326,1386,1470,1680, %T A325991 1716,1820,1848,1870,1890,1938,2100,2145,2310,2470,2520,2574,2622, %U A325991 2652,2730,2772,2926,2940,3150,3234,3315,3360,3432,3465,3570,3640,3696,3740,3780,3876 %N A325991 Heinz numbers of integer partitions such that not every orderless pair of distinct parts has a different sum. %C A325991 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A325991 The sequence of terms together with their prime indices begins: %e A325991 210: {1,2,3,4} %e A325991 420: {1,1,2,3,4} %e A325991 462: {1,2,4,5} %e A325991 630: {1,2,2,3,4} %e A325991 840: {1,1,1,2,3,4} %e A325991 858: {1,2,5,6} %e A325991 910: {1,3,4,6} %e A325991 924: {1,1,2,4,5} %e A325991 1050: {1,2,3,3,4} %e A325991 1155: {2,3,4,5} %e A325991 1260: {1,1,2,2,3,4} %e A325991 1326: {1,2,6,7} %e A325991 1386: {1,2,2,4,5} %e A325991 1470: {1,2,3,4,4} %e A325991 1680: {1,1,1,1,2,3,4} %e A325991 1716: {1,1,2,5,6} %e A325991 1820: {1,1,3,4,6} %e A325991 1848: {1,1,1,2,4,5} %e A325991 1870: {1,3,5,7} %e A325991 1890: {1,2,2,2,3,4} %t A325991 Select[Range[1000],!UnsameQ@@Plus@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&] %Y A325991 The subset case is A196723. %Y A325991 The maximal case is A325878. %Y A325991 The integer partition case is A325857. %Y A325991 The strict integer partition case is A325877. %Y A325991 Heinz numbers of the counterexamples are given by A325991. %Y A325991 Cf. A002033, A056239, A103300, A108917, A112798, A143823, A196724, A325853, A325855, A325858, A325859, A325862, A325992, A325993, A325994. %K A325991 nonn %O A325991 1,1 %A A325991 _Gus Wiseman_, Jun 02 2019