cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325991 Heinz numbers of integer partitions such that not every orderless pair of distinct parts has a different sum.

This page as a plain text file.
%I A325991 #8 Jun 02 2019 23:41:00
%S A325991 210,420,462,630,840,858,910,924,1050,1155,1260,1326,1386,1470,1680,
%T A325991 1716,1820,1848,1870,1890,1938,2100,2145,2310,2470,2520,2574,2622,
%U A325991 2652,2730,2772,2926,2940,3150,3234,3315,3360,3432,3465,3570,3640,3696,3740,3780,3876
%N A325991 Heinz numbers of integer partitions such that not every orderless pair of distinct parts has a different sum.
%C A325991 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A325991 The sequence of terms together with their prime indices begins:
%e A325991    210: {1,2,3,4}
%e A325991    420: {1,1,2,3,4}
%e A325991    462: {1,2,4,5}
%e A325991    630: {1,2,2,3,4}
%e A325991    840: {1,1,1,2,3,4}
%e A325991    858: {1,2,5,6}
%e A325991    910: {1,3,4,6}
%e A325991    924: {1,1,2,4,5}
%e A325991   1050: {1,2,3,3,4}
%e A325991   1155: {2,3,4,5}
%e A325991   1260: {1,1,2,2,3,4}
%e A325991   1326: {1,2,6,7}
%e A325991   1386: {1,2,2,4,5}
%e A325991   1470: {1,2,3,4,4}
%e A325991   1680: {1,1,1,1,2,3,4}
%e A325991   1716: {1,1,2,5,6}
%e A325991   1820: {1,1,3,4,6}
%e A325991   1848: {1,1,1,2,4,5}
%e A325991   1870: {1,3,5,7}
%e A325991   1890: {1,2,2,2,3,4}
%t A325991 Select[Range[1000],!UnsameQ@@Plus@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]
%Y A325991 The subset case is A196723.
%Y A325991 The maximal case is A325878.
%Y A325991 The integer partition case is A325857.
%Y A325991 The strict integer partition case is A325877.
%Y A325991 Heinz numbers of the counterexamples are given by A325991.
%Y A325991 Cf. A002033, A056239, A103300, A108917, A112798, A143823, A196724, A325853, A325855, A325858, A325859, A325862, A325992, A325993, A325994.
%K A325991 nonn
%O A325991 1,1
%A A325991 _Gus Wiseman_, Jun 02 2019