This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325992 #9 Jun 02 2019 23:41:06 %S A325992 30,60,90,105,110,120,150,180,210,220,238,240,270,273,300,315,330,360, %T A325992 385,390,420,440,450,462,476,480,506,510,525,540,546,550,570,600,627, %U A325992 630,660,690,714,720,735,750,770,780,806,810,819,840,858,870,880,900,910 %N A325992 Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different difference. %C A325992 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A325992 The sequence of terms together with their prime indices begins: %e A325992 30: {1,2,3} %e A325992 60: {1,1,2,3} %e A325992 90: {1,2,2,3} %e A325992 105: {2,3,4} %e A325992 110: {1,3,5} %e A325992 120: {1,1,1,2,3} %e A325992 150: {1,2,3,3} %e A325992 180: {1,1,2,2,3} %e A325992 210: {1,2,3,4} %e A325992 220: {1,1,3,5} %e A325992 238: {1,4,7} %e A325992 240: {1,1,1,1,2,3} %e A325992 270: {1,2,2,2,3} %e A325992 273: {2,4,6} %e A325992 300: {1,1,2,3,3} %e A325992 315: {2,2,3,4} %e A325992 330: {1,2,3,5} %e A325992 360: {1,1,1,2,2,3} %e A325992 385: {3,4,5} %e A325992 390: {1,2,3,6} %t A325992 Select[Range[1000],!UnsameQ@@Subtract@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&] %Y A325992 The subset case is A143823. %Y A325992 The maximal case is A325879. %Y A325992 The integer partition case is A325858. %Y A325992 The strict integer partition case is A325876. %Y A325992 Heinz numbers of the counterexamples are given by A325992. %Y A325992 Cf. A002033, A056239, A108917, A112798, A143824, A325325, A325868, A325879, A325991, A325993, A325994. %K A325992 nonn %O A325992 1,1 %A A325992 _Gus Wiseman_, Jun 02 2019