cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325992 Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different difference.

This page as a plain text file.
%I A325992 #9 Jun 02 2019 23:41:06
%S A325992 30,60,90,105,110,120,150,180,210,220,238,240,270,273,300,315,330,360,
%T A325992 385,390,420,440,450,462,476,480,506,510,525,540,546,550,570,600,627,
%U A325992 630,660,690,714,720,735,750,770,780,806,810,819,840,858,870,880,900,910
%N A325992 Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different difference.
%C A325992 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A325992 The sequence of terms together with their prime indices begins:
%e A325992    30: {1,2,3}
%e A325992    60: {1,1,2,3}
%e A325992    90: {1,2,2,3}
%e A325992   105: {2,3,4}
%e A325992   110: {1,3,5}
%e A325992   120: {1,1,1,2,3}
%e A325992   150: {1,2,3,3}
%e A325992   180: {1,1,2,2,3}
%e A325992   210: {1,2,3,4}
%e A325992   220: {1,1,3,5}
%e A325992   238: {1,4,7}
%e A325992   240: {1,1,1,1,2,3}
%e A325992   270: {1,2,2,2,3}
%e A325992   273: {2,4,6}
%e A325992   300: {1,1,2,3,3}
%e A325992   315: {2,2,3,4}
%e A325992   330: {1,2,3,5}
%e A325992   360: {1,1,1,2,2,3}
%e A325992   385: {3,4,5}
%e A325992   390: {1,2,3,6}
%t A325992 Select[Range[1000],!UnsameQ@@Subtract@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]
%Y A325992 The subset case is A143823.
%Y A325992 The maximal case is A325879.
%Y A325992 The integer partition case is A325858.
%Y A325992 The strict integer partition case is A325876.
%Y A325992 Heinz numbers of the counterexamples are given by A325992.
%Y A325992 Cf. A002033, A056239, A108917, A112798, A143824, A325325, A325868, A325879, A325991, A325993, A325994.
%K A325992 nonn
%O A325992 1,1
%A A325992 _Gus Wiseman_, Jun 02 2019