This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325993 #9 Jun 02 2019 23:41:13 %S A325993 390,780,798,1170,1365,1560,1596,1914,1950,2340,2394,2590,2730,2886, %T A325993 3120,3192,3510,3828,3900,3990,4095,4290,4386,4485,4680,4788,5070, %U A325993 5170,5180,5460,5586,5742,5772,5850,6042,6240,6384,6630,6699,6825,7020,7182,7410,7656 %N A325993 Heinz numbers of integer partitions such that not every orderless pair of distinct parts has a different product. %C A325993 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A325993 The sequence of terms together with their prime indices begins: %e A325993 390: {1,2,3,6} %e A325993 780: {1,1,2,3,6} %e A325993 798: {1,2,4,8} %e A325993 1170: {1,2,2,3,6} %e A325993 1365: {2,3,4,6} %e A325993 1560: {1,1,1,2,3,6} %e A325993 1596: {1,1,2,4,8} %e A325993 1914: {1,2,5,10} %e A325993 1950: {1,2,3,3,6} %e A325993 2340: {1,1,2,2,3,6} %e A325993 2394: {1,2,2,4,8} %e A325993 2590: {1,3,4,12} %e A325993 2730: {1,2,3,4,6} %e A325993 2886: {1,2,6,12} %e A325993 3120: {1,1,1,1,2,3,6} %e A325993 3192: {1,1,1,2,4,8} %e A325993 3510: {1,2,2,2,3,6} %e A325993 3828: {1,1,2,5,10} %e A325993 3900: {1,1,2,3,3,6} %e A325993 3990: {1,2,3,4,8} %t A325993 Select[Range[1000],!UnsameQ@@Times@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&] %Y A325993 The subset case is A196724. %Y A325993 The maximal case is A325859. %Y A325993 The integer partition case is A325856. %Y A325993 The strict integer partition case is A325855. %Y A325993 Heinz numbers of the counterexamples are given by A325993. %Y A325993 Cf. A002033, A056239, A108917, A112798, A143823, A292886, A325858, A325877, A325991, A325992, A325994. %K A325993 nonn %O A325993 1,1 %A A325993 _Gus Wiseman_, Jun 02 2019