cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325993 Heinz numbers of integer partitions such that not every orderless pair of distinct parts has a different product.

This page as a plain text file.
%I A325993 #9 Jun 02 2019 23:41:13
%S A325993 390,780,798,1170,1365,1560,1596,1914,1950,2340,2394,2590,2730,2886,
%T A325993 3120,3192,3510,3828,3900,3990,4095,4290,4386,4485,4680,4788,5070,
%U A325993 5170,5180,5460,5586,5742,5772,5850,6042,6240,6384,6630,6699,6825,7020,7182,7410,7656
%N A325993 Heinz numbers of integer partitions such that not every orderless pair of distinct parts has a different product.
%C A325993 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A325993 The sequence of terms together with their prime indices begins:
%e A325993    390: {1,2,3,6}
%e A325993    780: {1,1,2,3,6}
%e A325993    798: {1,2,4,8}
%e A325993   1170: {1,2,2,3,6}
%e A325993   1365: {2,3,4,6}
%e A325993   1560: {1,1,1,2,3,6}
%e A325993   1596: {1,1,2,4,8}
%e A325993   1914: {1,2,5,10}
%e A325993   1950: {1,2,3,3,6}
%e A325993   2340: {1,1,2,2,3,6}
%e A325993   2394: {1,2,2,4,8}
%e A325993   2590: {1,3,4,12}
%e A325993   2730: {1,2,3,4,6}
%e A325993   2886: {1,2,6,12}
%e A325993   3120: {1,1,1,1,2,3,6}
%e A325993   3192: {1,1,1,2,4,8}
%e A325993   3510: {1,2,2,2,3,6}
%e A325993   3828: {1,1,2,5,10}
%e A325993   3900: {1,1,2,3,3,6}
%e A325993   3990: {1,2,3,4,8}
%t A325993 Select[Range[1000],!UnsameQ@@Times@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]
%Y A325993 The subset case is A196724.
%Y A325993 The maximal case is A325859.
%Y A325993 The integer partition case is A325856.
%Y A325993 The strict integer partition case is A325855.
%Y A325993 Heinz numbers of the counterexamples are given by A325993.
%Y A325993 Cf. A002033, A056239, A108917, A112798, A143823, A292886, A325858, A325877, A325991, A325992, A325994.
%K A325993 nonn
%O A325993 1,1
%A A325993 _Gus Wiseman_, Jun 02 2019