cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A325994 Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different quotient.

This page as a plain text file.
%I A325994 #5 Jun 02 2019 23:41:20
%S A325994 42,84,126,168,210,230,252,294,336,378,390,399,420,460,462,504,546,
%T A325994 588,630,672,690,714,742,756,780,798,840,882,920,924,966,1008,1050,
%U A325994 1092,1134,1150,1170,1176,1197,1218,1260,1302,1344,1365,1380,1386,1428,1470,1484
%N A325994 Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different quotient.
%C A325994 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
%e A325994 The sequence of terms together with their prime indices begins:
%e A325994     42: {1,2,4}
%e A325994     84: {1,1,2,4}
%e A325994    126: {1,2,2,4}
%e A325994    168: {1,1,1,2,4}
%e A325994    210: {1,2,3,4}
%e A325994    230: {1,3,9}
%e A325994    252: {1,1,2,2,4}
%e A325994    294: {1,2,4,4}
%e A325994    336: {1,1,1,1,2,4}
%e A325994    378: {1,2,2,2,4}
%e A325994    390: {1,2,3,6}
%e A325994    399: {2,4,8}
%e A325994    420: {1,1,2,3,4}
%e A325994    460: {1,1,3,9}
%e A325994    462: {1,2,4,5}
%e A325994    504: {1,1,1,2,2,4}
%e A325994    546: {1,2,4,6}
%e A325994    588: {1,1,2,4,4}
%e A325994    630: {1,2,2,3,4}
%e A325994    672: {1,1,1,1,1,2,4}
%t A325994 Select[Range[1000],!UnsameQ@@Divide@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&]
%Y A325994 The subset case is A325860.
%Y A325994 The maximal case is A325861.
%Y A325994 The integer partition case is A325853.
%Y A325994 The strict integer partition case is A325854.
%Y A325994 Heinz numbers of the counterexamples are given by A325994.
%Y A325994 Cf. A002033, A056239, A103300, A108917, A112798, A143823, A196724, A325768, A325856, A325868, A325869, A325876.
%K A325994 nonn
%O A325994 1,1
%A A325994 _Gus Wiseman_, Jun 02 2019