This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A325994 #5 Jun 02 2019 23:41:20 %S A325994 42,84,126,168,210,230,252,294,336,378,390,399,420,460,462,504,546, %T A325994 588,630,672,690,714,742,756,780,798,840,882,920,924,966,1008,1050, %U A325994 1092,1134,1150,1170,1176,1197,1218,1260,1302,1344,1365,1380,1386,1428,1470,1484 %N A325994 Heinz numbers of integer partitions such that not every ordered pair of distinct parts has a different quotient. %C A325994 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %e A325994 The sequence of terms together with their prime indices begins: %e A325994 42: {1,2,4} %e A325994 84: {1,1,2,4} %e A325994 126: {1,2,2,4} %e A325994 168: {1,1,1,2,4} %e A325994 210: {1,2,3,4} %e A325994 230: {1,3,9} %e A325994 252: {1,1,2,2,4} %e A325994 294: {1,2,4,4} %e A325994 336: {1,1,1,1,2,4} %e A325994 378: {1,2,2,2,4} %e A325994 390: {1,2,3,6} %e A325994 399: {2,4,8} %e A325994 420: {1,1,2,3,4} %e A325994 460: {1,1,3,9} %e A325994 462: {1,2,4,5} %e A325994 504: {1,1,1,2,2,4} %e A325994 546: {1,2,4,6} %e A325994 588: {1,1,2,4,4} %e A325994 630: {1,2,2,3,4} %e A325994 672: {1,1,1,1,1,2,4} %t A325994 Select[Range[1000],!UnsameQ@@Divide@@@Subsets[PrimePi/@First/@FactorInteger[#],{2}]&] %Y A325994 The subset case is A325860. %Y A325994 The maximal case is A325861. %Y A325994 The integer partition case is A325853. %Y A325994 The strict integer partition case is A325854. %Y A325994 Heinz numbers of the counterexamples are given by A325994. %Y A325994 Cf. A002033, A056239, A103300, A108917, A112798, A143823, A196724, A325768, A325856, A325868, A325869, A325876. %K A325994 nonn %O A325994 1,1 %A A325994 _Gus Wiseman_, Jun 02 2019