cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326015 Number of strict knapsack partitions of n such that no superset with the same maximum is knapsack.

This page as a plain text file.
%I A326015 #10 Jan 08 2022 08:57:06
%S A326015 1,0,1,1,1,0,1,1,3,2,4,4,5,3,3,4,6,2,7,6,13,9,19,16,27,21,40,33,47,37,
%T A326015 54,48,66,51,65,65,77,64,80,71,96,60,106,95,112,93,152,114,191,131,
%U A326015 242,192,303,210,366,300,482,352,581,450,713,539,882,689,995
%N A326015 Number of strict knapsack partitions of n such that no superset with the same maximum is knapsack.
%C A326015 An integer partition is knapsack if every distinct submultiset has a different sum.
%C A326015 These are the subsets counted by A325867, ordered by sum rather than maximum.
%H A326015 Fausto A. C. Cariboni, <a href="/A326015/b326015.txt">Table of n, a(n) for n = 1..600</a>
%e A326015 The a(1) = 1 through a(17) = 6 strict knapsack partitions (empty columns not shown):
%e A326015   {1}  {2,1}  {3,1}  {3,2}  {4,2,1}  {5,2,1}  {4,3,2}  {6,3,1}  {5,4,2}
%e A326015                                               {5,3,1}  {7,2,1}  {6,3,2}
%e A326015                                               {6,2,1}           {6,4,1}
%e A326015                                                                 {7,3,1}
%e A326015 .
%e A326015   {5,4,3}  {6,4,3}  {6,5,3}  {6,5,4}    {7,5,4}    {7,6,4}
%e A326015   {7,3,2}  {6,5,2}  {8,5,1}  {7,6,2}    {9,4,3}    {9,5,3}
%e A326015   {7,4,1}  {7,4,2}  {9,3,2}  {8,4,2,1}  {9,6,1}    {9,6,2}
%e A326015   {8,3,1}  {7,5,1}                      {9,4,2,1}  {8,4,3,2}
%e A326015            {9,3,1}                                 {9,5,2,1}
%e A326015                                                    {10,4,2,1}
%t A326015 ksQ[y_]:=UnsameQ@@Total/@Union[Subsets[y]]
%t A326015 maxsks[n_]:=Select[Select[IntegerPartitions[n],UnsameQ@@#&&ksQ[#]&],Select[Table[Append[#,i],{i,Complement[Range[Max@@#],#]}],ksQ]=={}&];
%t A326015 Table[Length[maxsks[n]],{n,30}]
%Y A326015 Cf. A002033, A108917, A275972, A276024.
%Y A326015 Cf. A325863, A325864, A325877, A325878, A325880, A326016, A326017, A326018.
%K A326015 nonn
%O A326015 1,9
%A A326015 _Gus Wiseman_, Jun 03 2019