A326016 Number of knapsack partitions of n such that no addition of one part up to the maximum is knapsack.
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 1, 1, 0, 3, 0, 0, 0, 1, 0, 8, 0, 8, 4, 3, 0, 11, 5, 3, 2, 5, 0, 29, 2, 9, 8, 20, 2
Offset: 1
Examples
The initial terms count the following partitions: 15: (5,4,3,3) 21: (7,6,5,3) 21: (7,5,3,3,3) 24: (8,7,6,3) 25: (7,5,5,4,4) 27: (9,8,7,3) 27: (9,7,6,5) 27: (8,7,3,3,3,3) 31: (10,8,6,6,1) 33: (11,9,7,3,3) 33: (11,8,5,5,4) 33: (11,7,6,6,3) 33: (11,7,3,3,3,3,3) 33: (11,5,5,4,4,4) 33: (10,9,8,3,3) 33: (10,8,6,6,3) 33: (10,8,3,3,3,3,3)
Crossrefs
Programs
-
Mathematica
sums[ptn_]:=sums[ptn]=If[Length[ptn]==1,ptn,Union@@(Join[sums[#],sums[#]+Total[ptn]-Total[#]]&/@Union[Table[Delete[ptn,i],{i,Length[ptn]}]])]; ksQ[y_]:=Length[sums[Sort[y]]]==Times@@(Length/@Split[Sort[y]]+1)-1; maxks[n_]:=Select[IntegerPartitions[n],ksQ[#]&&Select[Table[Sort[Append[#,i]],{i,Range[Max@@#]}],ksQ]=={}&]; Table[Length[maxks[n]],{n,30}]
Comments