cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326017 Triangle read by rows where T(n,k) is the number of knapsack partitions of n with maximum k.

This page as a plain text file.
%I A326017 #13 Jun 05 2021 17:00:53
%S A326017 1,0,1,0,1,1,0,1,1,1,0,1,1,1,1,0,1,1,2,1,1,0,1,1,1,2,1,1,0,1,1,2,3,2,
%T A326017 1,1,0,1,1,2,1,3,2,1,1,0,1,1,2,2,4,3,2,1,1,0,1,1,2,3,1,4,3,2,1,1,0,1,
%U A326017 1,3,3,4,6,4,3,2,1,1,0,1,1,1,1,3,1,6,4
%N A326017 Triangle read by rows where T(n,k) is the number of knapsack partitions of n with maximum k.
%C A326017 An integer partition is knapsack if every distinct submultiset has a different sum.
%H A326017 Fausto A. C. Cariboni, <a href="/A326017/b326017.txt">Table of n, a(n) for n = 0..10010</a>
%H A326017 Fausto A. C. Cariboni, <a href="/A326017/a326017.txt">Conjectures on columns of T(n,k)</a>, Jun 05 2021.
%e A326017 Triangle begins:
%e A326017   1
%e A326017   0  1
%e A326017   0  1  1
%e A326017   0  1  1  1
%e A326017   0  1  1  1  1
%e A326017   0  1  1  2  1  1
%e A326017   0  1  1  1  2  1  1
%e A326017   0  1  1  2  3  2  1  1
%e A326017   0  1  1  2  1  3  2  1  1
%e A326017   0  1  1  2  2  4  3  2  1  1
%e A326017   0  1  1  2  3  1  4  3  2  1  1
%e A326017   0  1  1  3  3  4  6  4  3  2  1  1
%e A326017   0  1  1  1  1  3  1  6  4  3  2  1  1
%e A326017   0  1  1  3  3  5  4  7  6  4  3  2  1  1
%e A326017   0  1  1  2  3  5  4  1  7  6  4  3  2  1  1
%e A326017   0  1  1  2  3  4  6  6 11  7  6  4  3  2  1  1
%e A326017 Row n = 9 counts the following partitions:
%e A326017   (111111111)  (22221)  (333)   (432)  (54)     (63)    (72)   (81)  (9)
%e A326017                         (3222)  (441)  (522)    (621)   (711)
%e A326017                                        (531)    (6111)
%e A326017                                        (51111)
%t A326017 ks[n_]:=Select[IntegerPartitions[n],UnsameQ@@Total/@Union[Subsets[#]]&];
%t A326017 Table[Length[Select[ks[n],Length[#]==k==0||Max@@#==k&]],{n,0,15},{k,0,n}]
%Y A326017 Row sums are A108917.
%Y A326017 Column k = 3 is A326034.
%Y A326017 Cf. A002033, A196723, A275972, A276024.
%Y A326017 Cf. A325592, A325857, A325862, A325863, A325864, A325877, A326016, A326018.
%K A326017 nonn,tabl
%O A326017 0,19
%A A326017 _Gus Wiseman_, Jun 03 2019