This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326018 #4 Jun 04 2019 08:36:18 %S A326018 1925,12155,20995,23375,37145 %N A326018 Heinz numbers of knapsack partitions such that no addition of one part up to the maximum is knapsack. %C A326018 The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). %C A326018 An integer partition is knapsack if every submultiset has a different sum. %C A326018 The enumeration of these partitions by sum is given by A326016. %e A326018 The sequence of terms together with their prime indices begins: %e A326018 1925: {3,3,4,5} %e A326018 12155: {3,5,6,7} %e A326018 20995: {3,6,7,8} %e A326018 23375: {3,3,3,5,7} %e A326018 37145: {3,7,8,9} %t A326018 ksQ[y_]:=UnsameQ@@Total/@Union[Subsets[y]]; %t A326018 Select[Range[2,200],With[{phm=If[#==1,{},Flatten[Cases[FactorInteger[#],{p_,k_}:>Table[PrimePi[p],{k}]]]]},ksQ[phm]&&Select[Table[Sort[Append[phm,i]],{i,Max@@phm}],ksQ]=={}]&] %Y A326018 Cf. A002033, A108917, A275972, A299702, A299729, A304793. %Y A326018 Cf. A325780, A325782, A325857, A325862, A325878, A325880, A326015, A326016. %K A326018 nonn,more %O A326018 1,1 %A A326018 _Gus Wiseman_, Jun 03 2019