cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A326019 Heinz numbers of non-knapsack partitions such that every non-singleton submultiset has a different sum.

Original entry on oeis.org

12, 30, 40, 63, 70, 112, 154, 165, 198, 220, 273, 286, 325, 351, 352, 364, 442, 561, 595, 646, 714, 741, 748, 765, 832, 850, 874, 918, 931, 952, 988, 1045, 1173, 1254, 1334, 1425, 1495, 1539, 1564, 1653, 1672, 1771, 1794, 1798, 1900, 2139, 2176, 2204, 2254
Offset: 1

Views

Author

Gus Wiseman, Jun 03 2019

Keywords

Comments

A subsequence of A299729.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k).
An integer partition is knapsack if every distinct submultiset has a different sum.

Examples

			The sequence of terms together with their prime indices begins:
   12: {1,1,2}
   30: {1,2,3}
   40: {1,1,1,3}
   63: {2,2,4}
   70: {1,3,4}
  112: {1,1,1,1,4}
  154: {1,4,5}
  165: {2,3,5}
  198: {1,2,2,5}
  220: {1,1,3,5}
  273: {2,4,6}
  286: {1,5,6}
  325: {3,3,6}
  351: {2,2,2,6}
  352: {1,1,1,1,1,5}
  364: {1,1,4,6}
  442: {1,6,7}
  561: {2,5,7}
  595: {3,4,7}
  646: {1,7,8}
		

Crossrefs

Programs

  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Select[Range[1000],!UnsameQ@@hwt/@Divisors[#]&&UnsameQ@@hwt/@Select[Divisors[#],!PrimeQ[#]&]&]