A326019 Heinz numbers of non-knapsack partitions such that every non-singleton submultiset has a different sum.
12, 30, 40, 63, 70, 112, 154, 165, 198, 220, 273, 286, 325, 351, 352, 364, 442, 561, 595, 646, 714, 741, 748, 765, 832, 850, 874, 918, 931, 952, 988, 1045, 1173, 1254, 1334, 1425, 1495, 1539, 1564, 1653, 1672, 1771, 1794, 1798, 1900, 2139, 2176, 2204, 2254
Offset: 1
Keywords
Examples
The sequence of terms together with their prime indices begins: 12: {1,1,2} 30: {1,2,3} 40: {1,1,1,3} 63: {2,2,4} 70: {1,3,4} 112: {1,1,1,1,4} 154: {1,4,5} 165: {2,3,5} 198: {1,2,2,5} 220: {1,1,3,5} 273: {2,4,6} 286: {1,5,6} 325: {3,3,6} 351: {2,2,2,6} 352: {1,1,1,1,1,5} 364: {1,1,4,6} 442: {1,6,7} 561: {2,5,7} 595: {3,4,7} 646: {1,7,8}
Crossrefs
Programs
-
Mathematica
hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]]; Select[Range[1000],!UnsameQ@@hwt/@Divisors[#]&&UnsameQ@@hwt/@Select[Divisors[#],!PrimeQ[#]&]&]
Comments