This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326022 #12 Jun 03 2024 13:16:44 %S A326022 1,1,1,1,2,2,2,4,8,8,8,10,14,25,40,49,62 %N A326022 Number of minimal complete subsets of {1..n} with maximum n. %C A326022 A set of positive integers summing to m is complete if every nonnegative integer up to m is the sum of some subset. For example, (1,2,3,6,13) is a complete set because we have: %C A326022 0 = (empty sum) %C A326022 1 = 1 %C A326022 2 = 2 %C A326022 3 = 3 %C A326022 4 = 1 + 3 %C A326022 5 = 2 + 3 %C A326022 6 = 6 %C A326022 7 = 6 + 1 %C A326022 8 = 6 + 2 %C A326022 9 = 6 + 3 %C A326022 10 = 1 + 3 + 6 %C A326022 11 = 2 + 3 + 6 %C A326022 12 = 1 + 2 + 3 + 6 %C A326022 and the remaining numbers 13-25 are obtained by adding 13 to each of these. %H A326022 Andrzej Kukla and Piotr Miska, <a href="https://arxiv.org/abs/2405.18225">On practical sets and A-practical numbers</a>, arXiv:2405.18225 [math.NT], 2024. %e A326022 The a(3) = 1 through a(9) = 8 subsets: %e A326022 {1,2,3} {1,2,4} {1,2,3,5} {1,2,3,6} {1,2,3,7} {1,2,4,8} {1,2,3,4,9} %e A326022 {1,2,4,5} {1,2,4,6} {1,2,4,7} {1,2,3,5,8} {1,2,3,5,9} %e A326022 {1,2,3,6,8} {1,2,3,6,9} %e A326022 {1,2,3,7,8} {1,2,3,7,9} %e A326022 {1,2,4,5,9} %e A326022 {1,2,4,6,9} %e A326022 {1,2,4,7,9} %e A326022 {1,2,4,8,9} %t A326022 fasmin[y_]:=Complement[y,Union@@Table[Union[s,#]&/@Rest[Subsets[Complement[Union@@y,s]]],{s,y}]]; %t A326022 Table[Length[fasmin[Select[Subsets[Range[n]],Max@@#==n&&Union[Plus@@@Subsets[#]]==Range[0,Total[#]]&]]],{n,10}] %Y A326022 Cf. A002033, A103295, A108917, A126796, A188431, A276024. %Y A326022 Cf. A325684, A325781, A325790, A325791, A325986, A325988, A326016, A326020, A326021, A326036. %K A326022 nonn,more %O A326022 1,5 %A A326022 _Gus Wiseman_, Jun 04 2019