This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326024 #14 Apr 10 2021 15:07:42 %S A326024 1,2,3,5,9,15,25,41,68,109,179,284,443,681,1062,1587,2440,3638,5443, %T A326024 8021,11953,17273,25578,37001,53953,77429,113063,160636,232928,330775, %U A326024 475380,672056,967831,1359743,1952235,2743363,3918401,5495993,7856134,10984547,15669741 %N A326024 Number of subsets of {1..n} containing no sums or products of distinct elements. %H A326024 Fausto A. C. Cariboni, <a href="/A326024/b326024.txt">Table of n, a(n) for n = 0..80</a> %e A326024 The a(0) = 1 through a(5) = 15 subsets: %e A326024 {} {} {} {} {} {} %e A326024 {1} {1} {1} {1} {1} %e A326024 {2} {2} {2} {2} %e A326024 {3} {3} {3} %e A326024 {2,3} {4} {4} %e A326024 {2,3} {5} %e A326024 {2,4} {2,3} %e A326024 {3,4} {2,4} %e A326024 {2,3,4} {2,5} %e A326024 {3,4} %e A326024 {3,5} %e A326024 {4,5} %e A326024 {2,3,4} %e A326024 {2,4,5} %e A326024 {3,4,5} %t A326024 Table[Length[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Subsets[#,{2,n}],Times@@@Subsets[#,{2,n}]]]=={}&]],{n,0,10}] %o A326024 (PARI) %o A326024 a(n)={ %o A326024 my(recurse(k, es, ep)= %o A326024 if(k > n, 1, %o A326024 my(t = self()(k + 1, es, ep)); %o A326024 if(!bittest(es,k) && !bittest(ep,k), %o A326024 es = bitor(es, bitand((2<<n)-1, es << k)); %o A326024 forstep(i=n\k, 1, -1, if(bittest(ep,i), ep=bitor(ep,1<<(k*i)))); %o A326024 t += self()(k + 1, es, ep); %o A326024 ); %o A326024 t); %o A326024 ); %o A326024 1 + if(n, recurse(2, 1, 2)); %o A326024 } \\ _Andrew Howroyd_, Aug 25 2019 %Y A326024 Subsets without sums of distinct elements are A151897. %Y A326024 Subsets without products of distinct elements are A326117. %Y A326024 Maximal subsets without sums or products of distinct elements are A326025. %Y A326024 Subsets with sums (and products) are A326083. %Y A326024 Sum-free and product-free subsets are A326495. %Y A326024 Cf. A007865, A051026, A121269, A325710, A326076, A326489, A326497, A326498. %K A326024 nonn %O A326024 0,2 %A A326024 _Gus Wiseman_, Jul 09 2019 %E A326024 Terms a(16)-a(40) from _Andrew Howroyd_, Aug 25 2019