This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326025 #13 Oct 05 2020 05:08:41 %S A326025 1,1,2,2,2,4,5,10,13,20,28,40,54,82,120,172,244,347,471,651,874,1198, %T A326025 1635,2210,2867,3895,5234,6889,9019,11919,15629,20460,26254,33827, %U A326025 43881,56367,71841,91834,117695,148503,188039,311442,390859,488327,610685,759665 %N A326025 Number of maximal subsets of {1..n} containing no sums or products of distinct elements. %H A326025 Andrew Howroyd, <a href="/A326025/a326025.txt">PARI Program</a> %e A326025 The a(1) = 1 through a(8) = 13 maximal subsets: %e A326025 {1} {1} {1} {1} {1} {1} {1} {1} %e A326025 {2} {2,3} {2,3,4} {2,3,4} {2,3,4} {2,3,4} {2,3,4} %e A326025 {2,4,5} {2,4,5} {2,3,7} {2,4,5} %e A326025 {3,4,5} {2,5,6} {2,4,5} {2,4,7} %e A326025 {3,4,5,6} {2,4,7} {2,5,6} %e A326025 {2,5,6} {2,5,8} %e A326025 {2,6,7} {2,6,7} %e A326025 {3,4,5,6} {2,3,7,8} %e A326025 {3,5,6,7} {3,4,5,6} %e A326025 {4,5,6,7} {3,4,6,8} %e A326025 {3,5,6,7} %e A326025 {3,6,7,8} %e A326025 {4,5,6,7,8} %t A326025 fasmax[y_]:=Complement[y,Union@@(Most[Subsets[#]]&/@y)]; %t A326025 Table[Length[fasmax[Select[Subsets[Range[n]],Intersection[#,Union[Plus@@@Subsets[#,{2,n}],Times@@@Subsets[#,{2,n}]]]=={}&]]],{n,0,10}] %o A326025 (PARI) \\ See link for program file. %o A326025 for(n=0, 25, print1(A326025(n), ", ")) \\ _Andrew Howroyd_, Aug 29 2019 %Y A326025 Maximal subsets without sums of distinct elements are A326498. %Y A326025 Maximal subsets without products of distinct elements are A325710. %Y A326025 Subsets without sums or products of distinct elements are A326024. %Y A326025 Subsets with sums (and products) are A326083. %Y A326025 Maximal sum-free and product-free subsets are A326497. %Y A326025 Cf. A007865, A051026, A121269, A151897, A326116, A326117, A326491, A326495, A326496. %K A326025 nonn %O A326025 0,3 %A A326025 _Gus Wiseman_, Jul 09 2019 %E A326025 a(16)-a(40) from _Andrew Howroyd_, Aug 29 2019 %E A326025 a(41)-a(45) from _Jinyuan Wang_, Oct 03 2020