This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A326027 #17 Mar 07 2025 06:33:04 %S A326027 0,1,2,3,6,7,8,9,12,19,20,21,28,29,30,31,40,41,70,71,74,75,76,77,108, %T A326027 123,124,211,214,215,216,217,332,333,334,335,592,593,594,595,612,613, %U A326027 614,615,618,639,640,641,1160,1183,1324,1325,1328,1329,2176,2177,2196,2197,2198,2199,2414,2415,2416,2443,4000,4001,4002,4003,4006,4007,4008,4009,6626,6627,6628,9753,9756,9757,9758,9759,11136 %N A326027 Number of nonempty subsets of {1..n} whose geometric mean is an integer. %H A326027 Max Alekseyev, <a href="/A326027/b326027.txt">Table of n, a(n) for n = 0..255</a> %H A326027 Wikipedia, <a href="https://en.wikipedia.org/wiki/Geometric_mean">Geometric mean</a> %F A326027 a(n) = A357413(n) + A357414(n). For a squarefree n, a(n) = a(n-1) + 1. - _Max Alekseyev_, Mar 01 2025 %e A326027 The a(1) = 1 through a(9) = 19 subsets: %e A326027 {1} {1} {1} {1} {1} {1} {1} {1} {1} %e A326027 {2} {2} {2} {2} {2} {2} {2} {2} %e A326027 {3} {3} {3} {3} {3} {3} {3} %e A326027 {4} {4} {4} {4} {4} {4} %e A326027 {1,4} {5} {5} {5} {5} {5} %e A326027 {1,2,4} {1,4} {6} {6} {6} {6} %e A326027 {1,2,4} {1,4} {7} {7} {7} %e A326027 {1,2,4} {1,4} {8} {8} %e A326027 {1,2,4} {1,4} {9} %e A326027 {2,8} {1,4} %e A326027 {1,2,4} {1,9} %e A326027 {2,4,8} {2,8} %e A326027 {4,9} %e A326027 {1,2,4} %e A326027 {1,3,9} %e A326027 {2,4,8} %e A326027 {3,8,9} %e A326027 {4,6,9} %e A326027 {3,6,8,9} %t A326027 Table[Length[Select[Subsets[Range[n]],IntegerQ[GeometricMean[#]]&]],{n,0,10}] %Y A326027 First differences are A082553. %Y A326027 Partitions whose geometric mean is an integer are A067539. %Y A326027 Strict partitions whose geometric mean is an integer are A326625. %Y A326027 Subsets whose average is an integer are A051293. %Y A326027 Cf. A078174, A078175, A102627, A326567/A326568, A326622, A326623, A326624. %K A326027 nonn %O A326027 0,3 %A A326027 _Gus Wiseman_, Jul 14 2019 %E A326027 Terms a(57) onward from _Max Alekseyev_, Mar 01 2025